Arctic Lower-Troposphere Observed Structure

Hans Verlinde, Paul Lawson Knut Stamnes and Greg Roberts

Different Habit Parameterizations: Different ice concentration sensitivity

- Habit Impacts -

Dendrites

=> Best match for single layer case. Low ice nuclei concentrations required

Hexagonal plates => Best match for multi-layered case.and SpheresRequire 25 times the ice nucleiconcentration for dendrites.

Avramov and Harrington, 2009

Alexei Korolev (ISDAC April 8, 2008)

Immersion Freezing

Conceptual Model for Mixed-Phase Stratus

CCSM Polar Working Group Meeting, Santa Fe, NM 19-20 February, 2009

de Boer

ALTOS: Science Questions

- What is the distribution of microphysical properties of low-level Arctic clouds?
 - Ice crystal habits
 - Depend on environment?
- What is the horizontal variability in microphysical properties of low-level Arctic clouds?
 - Determining factors?
- Do gravity waves impact microphysical properties of low-level Arctic clouds?
 - Micro- & macroscopic properties
- Retrieval verification
 - Statistical distributions
- Ice shattering
 - Low aspiration balloon measurements

ALTOS: Measurements

- Tether Balloon
 - Lightweight Cloud Particle Imager
 - Ice Nuclei (filter)
 - Cloud Condensation Nuclei
 - Basic Met: T, Td, p, u, v
 - (Long-wave radiation)
- Surface Instrumentation
 - Full radiometer package
 - MWR
 - Surface Met
 - (MMCR, MPL)

Environment Canada fog measurements

- Including radiation, full microphysics, aerosol sampling
- Video Sonde
- (UAV in-cloud sampling)
 - Scripps/UAF

Sampling Strategies

- BL Profiling
- Cloud Profiling
- Constant altitude

Instrument Package Images Cloud Particles, Measures Pressure, Temperature, Dew Point, Winds, Ice Nuclei, Records GPS, Contains Onboard PC, Flash Disk and Telemetry

Mini-CCN instrument

Supersaturations	0.1 to 1% scan (5 min)
Flow rate	100 to 150 cm ³ min ⁻¹
Column length	130 mm

dimensions: 20 cm x 20 cm x 10 cm

weight and power: 1.5 kg & <25W

Greg Roberts – Scripps

Development of streamwise CCN

1st version April 2002

scale = 1 m

2nd version January 2003 DMT July 2004 mini version August 2006

Roberts and Nenes, AS&T, 2005

DMT – mini-CCN comparison

Three columns overnight at DMT → mini-CCN agrees well with DMT CCN

Greg Roberts – Scripps

NRL Broadband Radiometers (BBR)

Description:

The Broadband Radiometers (BBR) consist of modified Kipp & Zonen CM-22 pyranometers (to measure solar irradiance) and CG-4 pyrgeometers (to measure

Field-of-view:	Hemispheric
Temperature Range:	-65C to +80C
Estimated Accuracy:	3-5%
Weight:	2 lbs (0.9 kg)
Power:	28 VDC (use < 1A)

- Snow depth sensor
 Temperature sensor
 RH1 and T
 Vaisala surface temperature
- 5. Vaisala water phase sensor
- 6. RH2 and T
- 7. Wind speed and direction
- 8. SW and IR fluxes
- 9. SPN1; cloud cover, direct and diffuse radiative fluxes
- 10. Turbulence measurements

- 11.Hot plate (TPS) precip sensor
- 12. Distrometer (precip rate/extinction)
- 13. CAP aerosol measurements
- 14. Sentry Vis sensor
- 15. DMIST Vis sensor/camera
- 16. Ice particle counter (IPC)
- 17. FMD droplet spectra
- 18. VR G101 precip instrument
- 19. FD12P precip and Vis sensor

Operating Conditions

Operating Conditions

Electrical Power Provided via the Tether to the Balloon Instrument Package for Long-Duration Measurements

Tether is Guided Through a Hole in the Roof

Custom Gantry Guides Tether Above Roof

CCN spectra (single column)

- Current use of streamwise CCN generates a single supersaturation (S)
- Scan temperature and flow rates to retrieve CCN spectra
- Top figure shows activation of classified aerosols
- Bottom figure shows S distribution for classified aerosols
- Goal → achieve spectra between 0.1 & 1% S in 5 min.