

Cloud Condensation Nuclei Closure During CLASIC 2007

Jason Tomlinson and Don Collins PNNL Texas A&M University March 13th, 2008

Acknowledgements: Ground crew, pilots, and flight planners.

Work funded under DOE Grant #39495

Introduction

Introduction

Methodology

CLASIC 2007

Summary

- A major redesign of the Texas A&M Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) occurred in 2005/2006
 - Simultaneous measurements of size distributions and the hygroscopic properties of the aerosol
- For the CLASIC campaign, a Droplet Measurement Technologies (DMT) Cloud Condensation Nuclei Counter (CCNc) was also operated on the aircraft to measure the concentration of CCN active at supersaturations of 0.165, 0.305, and 0.60 %

Motivation

Introduction

Methodology CLASIC 2007

Summary

- Characterize the aerosol size distributions and physicochemical properties in various environments
- Predict the effect on visibility and cloud condensation nuclei formation
 - Compare predicted versus measured CCN to ascertain our level of understanding particle activation
- Important to constrain results for global and regional climate models

IPCC 2007

DMA/TDMA

Introduction Methodology CLASIC 2007 Summary

- 3 Hi-Flow Differential Mobility Analyzers
 - Operated at 10:1 flow ratio
- DMA size distribution measured from 0.010 to .700 μm every 90s
- TDMA growth distributions for dry diameters of 0.025, 0.050, 0.100, 0.200, and 0.400 µm measured every 12 minutes
- Maintained at 85% and 38°C throughout the project

3

DMA/TDMA

Introduction Methodology CLASIC 2007 Summary

- Calibrated at the beginning of CLASIC
- DMA
 - Inject PSL
- TDMA
 - Inject atomized ammonium sulfate and sodium chloride
 - Daily dry scans

Introduction Methodology CLASIC 2007 Summary

• A log-normal distribution was fitted to each mode. The geometric means of the log-normals are assumed to represent the hygroscopicity of the aerosol population.

DMT CCNc

Image Source: DMT

Lance et al., 2006

CFSTGC (CCN Counter)

<image>

Atomized ammonium sulfate is used to calibrate

CCN Prediction

Introduction Methodology

- CLASIC 2007
 - Summary

- Use modified Köhler Theory to determine S_c value of a particle with known dry diameter and G(85)
- Assumptions:
 - Particle is composed of an insoluble core surrounded by a soluble shell

- Soluble material is composed of Ammonium Sulfate with a van't Hoff factor (i) of 2.3
- In subsaturated conditions, the vapor pressure over the particle is in equilibrium with ambient vapor pressure
- Constant TDMA Temperature of 311 K

CLASIC 2007

•

- 14 research flights were flown to study how land surface processes affect atmospheric aerosol loading and chemistry and the resulting effects on the microphysical and macrophysical properties of cumulus cloud fields
- Measured over 1300 size distributions
- 110 hygroscopic growth factor distributions for each dry diameter of 0.025, 0.050, 0.100, 0.200, and 0.400 µm
- DMT CCNc operated simultaneously

Introduction Methodology CLASIC 2007 Summary

CLASIC 2007

Introduction

Methodology CLASIC 2007

Summary

	June 2007													
	11	12	12	15	16	17	19	20	21	22	23	24	28	30
Size Distributions														
G (85)														
0.165%														
0.305%														
0.600%														

Intercomparison

DMT CCNc

Introduction Methodology CLASIC 2007 Summary

For most flights the CCN counter was operated as follows:

0.165 Supersaturation0.305 Supersaturation0.600 Supersaturation

- Research flights with rapid altitude changes the supersaturation was fixed at 0.305 %
- Measured CCN concentrations were passed through several quality control checks
 - Are the flows within 10% of flows during calibration?
 - Does the first bin contribute a significant fraction to the overall counts?
 - Are the measured values greater than one would expect for pure ammonium sulfate?
- Number of data points after QC
 - 0.165 %: n=22 0.305 %: n=37 Fixed 0.305%: n=33 0.600 %: n=49

Size Distributions

CCN Scatterplot (0.305)

CCN Scatterplot (0.305 Fixed)

Summary

Introduction Methodology CLASIC 2007 Summary

- During the CLASIC 2007 campaign a DMA/TDMA and DMT CCNc were operated over 14 research flights measuring size distribution, hygroscopic growth distributions, and the number of CCN that would activate at 0.165 %, 0.305%, and 0.600%
- The average size distribution indicate a very stable volume mode and larger concentration within the boundary layer
- The hygroscopic growth distributions indicate the presence of organics
- Predicted CCN concentration agree well with measured CCN concentrations at supersaturations of 0.165% and 0.305%. However over prediction occurs at a supersaturation of 0.600%

Introduction Methodology CLASIC 2007

Summary

Thank You

http://www.met.tamu.edu/research/aerosol/Webpage/CLASIC_pages/ CLASICcalendar607.html

Extra Slides

 The size distributions for the DMA are recovered with a Twomey Algorithm

Integrated Concentration Number: 591.4 /cm³ Surface: 36.8 µm2/cm3 Volume: 1.5 µm3/cm3

- Atomized ammonium sulfate is passed through a DMA
 - 0.020 up to 0.400 μm
 - 15 minute scan time
- 50% point is determined to be the activation diameter
- Kohler theory is used to calculate the corresponding supersaturation

One decadal range of Sc values for Ammonium Sulfate

- Example from June 19th at 20:37 UTC
- DMT CCNc measured roughly 1353 +/-230 cm⁻³ activated at a supersaturation of 0.305%

dod by Battelle for the

thy Ratelle for the

Köhler Equation $\longrightarrow 0.85 = \alpha_w \exp\left[\frac{4M_w \sigma_{as}}{RT \rho_w (G(85)^* D_p^*)}\right]$

$$V_{85} = \frac{\pi}{6} D_{p(85)}^{3} = V_{i} + V_{as} \longrightarrow \frac{m_{s}}{\varepsilon_{s} \rho_{as}} - \frac{m_{s}}{\rho_{s}} = \frac{\pi}{6} \left(D_{p(85)}^{3} - D_{p}^{*3} \right)$$
$$V_{dry} = \frac{\pi}{6} D_{p}^{*3} = V_{i} + V_{s}$$

Surface Tension $\longrightarrow \sigma_{as} = \sigma_w(T) + \frac{2 \times 10^{-6} \varepsilon_s \rho_{as}}{M_s}$

Slide 35 of 46

$$V_{85} = \frac{\pi}{6} D_{p(85)}^{3} = V_{i} + V_{as} \longrightarrow \frac{m_{s}}{\varepsilon_{s} \rho_{as}} - \frac{m_{s}}{\rho_{s}} = \frac{\pi}{6} \left(D_{p(85)}^{3} - D_{p}^{*3} \right)$$
$$V_{dry} = \frac{\pi}{6} D_{p}^{*3} = V_{i} + V_{s}$$

Surface Tension $\longrightarrow \sigma_{as} = \sigma_w(T) + \frac{2 \times 10^{-6} \varepsilon_s \rho_{as}}{M_s}$

 α_w and ρ_{as} from Tang and Munklewitz, 1994

Köhler Equation #2
$$\rightarrow \frac{e'}{e_s} = \gamma_w \chi_w \exp\left[\frac{4 M_w \sigma_{as}}{RT \rho_w D_d}\right]$$

•The soluble mass determined in the initial calculations is fixed in the mass fraction of solute in solution term when calculating e'/e_s .

•Since this second calculation is representative of a particle in supersaturated conditions, we assume ideal behavior:

$$\gamma_{w} = 1 \qquad \qquad \chi_{w} = \frac{n_{w}}{n_{w} + in_{s}} = \frac{1}{\frac{iM_{w}}{M_{s}} \left(\frac{\varepsilon_{s}}{1 - \varepsilon_{s}}\right) + 1}$$
TDMA
Köhler Equation \longrightarrow Mass of Solute \longrightarrow Köhler equation #2

TDM/

Growth Factor Prediction $d\left(\frac{e'}{e}\right)$

#2

Mass of

Solute

TDMA Köhler Equation

 Comparison between integrated number concentration and measured concentration from the AOS TSI 3010

June 12th Morning Flight

