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Background

Clouds are very important for climate but poorly
represented in models blah blah blah...
- So what are we going to do about it?

Ways ARM-like observations can improve models:

- Test model cloud fields (must be in NWP mode)

- Test ideas in a cloud parameterization (e.g. overlap assumption,
degree of inhomogeneity, phase relationship, size distribution)

But why iIs progress in improving models using

these observations so slow?

- Too many algorithmic/statistical problems to overcome?

- Modelers and observationalists speak different languages?

- Difficult to identify the source of a problem (dynamics,
physics) when model clouds are wrong?

- Comparisons too piecemeal: 1 case study, 1 model, 1 algorithm?
- Climate modelers only interested in data on a long-lat grid?

- NWP modelers need rapid feedback on model performance but
usually papers published several years after the event?



Overview

The Cloudnet methodology

Evaluating cloud climatologies
- Cloud fraction, ice water content, liquid water content

Evaluating the quality of particular forecasts
- Skill scores, forecast “half-life"

Advantages of compositing
- "Bony diagrams”, diurnal cycle

Improving specific parameterizations
- Drizzle size distribution
- Cloud overlap and inhomogeneity in a radiation scheme

Towards a “unified” variational retrieval scheme

How can we accelerate the process of converting
observations into improved climate models?



The Cloudnet methodology

= Project funded by the European Union 2001-2005

- Included observationalists and NWP modelers from UK, France,
Germany, The Netherlands and Sweden

e Aim: to retrieve and evaluate the crucial cloud variables in
forecast and climate models
- Seven models: 5 NWP and 2 regional climate models in NWP mode
- Variables: cloud fraction, LWC, IWC, plus a number of others
- Four sites across Europe (but also works on ARM data)
- Period: Several years near-continuous data from each site
e Crucial aspects

- Common formats (including errors & data quality flags) allow all
algorithms to be applied at all sites to evaluate all models

- Evaluate for months and years: avoid unrepresentative case studies
- Focus on algorithms that can be run almost all the time

lllingworth et al. (BAMS 2007), www.cloud-net.org
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e Minimum instrument requirements at each site

- Doppler cloud radar (35 or 94 GHz)

- Cloud lidar or laser ceilometer

- Microwave radiometer (LWC and to correct radar attenuation)
Rain gauge (to flag unreliable data)
NWP model or radiosonde: some algorithms require 7, p, ¢, u, v



Liquid water path

e Dealing with drifting dual-wavelength radiometers
- Use lidar to determine whether clear sky or not
- Optimally adjust calibration coefficients to get LWP=0 in clear skies
- Provides much more accurate LWP in optically thin clouds

B July 2004
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e Instrument Synergy product
- Instruments interpolated to the same grid
- Calculate instrument errors and minimum detectable values
- Radar attenuation corrected (gaseous and liquid-water)
- Targets classified and data quality flag reported
- Stored in one unified-format NetCDF file per day
- Subseguent algorithms can run from this one input file
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e Instrument Synergy product
- Example of target classification and data quality fields:
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e Cloud products on observational grid
- Includes both simple and complicated algorithms
- Radar-lidar IWC (Donovan et al. 2000) is accurate but only
works in the 10% of ice clouds detected by lidar

- IWC from Z and T (Hogan et al. 2006) works almost all the
time; comparison to radar-lidar method shows appreciable
random error but low bias: use this to evaluate models
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e Liquid water content (+errors) on observational grid
- "Scaled adiabatic” method (LWP + T+ liquid cloud boundaries)
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Evaluation of Met Office NAE {North Atlantic and Eurepean) cloud fraction at ARM-MURGTAL between 1 Jun 2
(6-11 hour forecasts)
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Cloud fraction in 7 models

Mean & PDF for 2004 for Chilbolton, Paris and Cabauw

- Uncertain above 7 km as must remove undetectable clouds in model
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- Wide range of low cloud amounts in models
- Not enough overcast boxes, particularly in Met Office model

lllingworth et al. (BAMS 2007)
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A change to Meteo-France cloud scheme

e Compare cloud fraction to observations before & after April 2003
Note that cloud fraction and water content entirely diagnostic
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Liquid water content

LWC from the scaled adiabatic method
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|ce water content

e |WC estimated from radar reflectivity and temperature
- Rain events excluded from comparison due to mm-wave attenuation
- For IWC above rain, use cm-wave radar (e.g. Hogan et al., JAMC, 2006)

12 . . B A —
= =ome | 3-7 km
107 — Met Office meso.
Met Office global 0.15¢}
= gt —— Meteo France .
E KNMI RACMO =
= — SMHI RCA Fo
£ 6 \ [ — DWD LM 3 0.1
Rey ]
T 4f a
0.05
2_
0 -5 > 1 0
10 10 10 10 0 10107 10° 001 01 1 o
(a) Meah ice water content (g m™) (b) Ice water content (g m™)
- ECMWF and Met Office within the - Be careful in interpretation: mean
observational errors at all heights IWC dominated by few large values;

- Encouraging: AMIP implied an error PDF more relevant for radiation
of a factor of 10! - DWD has best PDF but worst mean!



How good Is a cloud forecast?

ECMWEF 500-hPa geopotential anomaly correlation
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What about
individual forecasts?
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life" of ~8 days (left)
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e Good properties of a skill score for cloud forecasts:
- Eguitable: e.g. O for random forecast, 1 for perfect forecast
- Proper: Does not encourage “hedging” (under-forecasting of

event to get a better skill)

- Small dependence on rate of occurrence of phenomenon (cloud)
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e Misleading: fewer cloud events so

“skill” is only in predicting clear skies

Models which underestimate cloud will do
better than they should



Equitable threat score

More sophisticated scores

e Equitable threat score e Yule’'s Q =(0-1)/(6+1) where
=(A-E)/(A+B+C-E) where E the odds ratio 6=AT/BC.
removes those hits that - Advantage: little dependence on
occurred by chance. frequency of cloud
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- Both scores are eguitable: 1 = perfect forecast, O = random forecast
e From now on use Equitable threat score with threshold of 0.05



0.05

Equitable threat score, threshold

Monthly skill versus time

e Measure of the skill of forecasting cloud fraction>0.05
- Comparing models using similar forecast lead time
- Compared with the persistence forecast (yesterday's measurements)
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e |[ower skill in summer convective events
- Prognostic cloud variables: ECMWF, Met Office, KNMI RACMO, DWD
- Entirely diagnostic schemes: Meteo-France, SMHI RCA



Skill versus lead time

e Unsurprisingly UK model most accurate in UK,
German model most accurate in Germany!

Equitable threat score
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Chilbolton

ECMWF model

Cloud fraction “Bony diagrams”
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Chilbolton

ECMWF model

Cloud fraction “Bony diagrams”
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(a) Chilbolton 94 GHz Galileo radar - Radar Reflectivity Factor
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1-year comparison with models

ECMWF, Met Office and Meteo-France overestimate drizzle rate
- Problem with auto-conversion and/or accretion rates?

Larger drops in model fall faster so too many reach surface

rather than evaporating: drying effect on boundary layer?
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Cloud structure in radiation schemes

e |ce water content from
Chilbolton, log,,(kg m=3)

Height (km)

e Plane-parallel approx:

- 2 regions in each layer, one
clear and one cloudy

Height (km)

e “Tripleclouds”:
- 3 regions in each layer

- Agrees well with ICA when
coded in a two-stream scheme

- Alternative to McICA

Height (km)

1 2 3 4 5 6 7 2

Time (hours) Shonk and Hogan (JClim 2008 in press)



Vert/horiz structure from observations

Horizontal structure from radar, aircraft and satellite:
- Fractional variance of water content 0.8+0.2 in GCM-sized gridboxes

Vertical structure
expressed in terms of
overlap decorrelation
height or pressure

- Latitude dependence

from ARM sites and
Chilbolton

CloudSat implies
clouds are more
maximally overlapped
- But also includes
precipitation (more
upright?)
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Calculations on ERA-40 cloud fields

TOA Shortwave CRF TOA Longwave CRF
’ Fix ohly inhomoggeneity? 0 | ! ' ; :
_oob..\ .. Tripleclouds (fix both).. . | : _ -
Plane-]oarallt—;l : 1] TTTPROE RPN URPPPRPODE-! R SPTPIIS SOPRR
‘e -40 ; i 5 ; 4
=~ B0 R = 5
S \ < 10}
= L=Fa' . B . .......... %
ol incroase S,W overlap qnd ______________________________________________
error, fixing just | . . inhomogeneity A S
inhomogeneity © T e buqses cancel " e 0%
would over- tropical convection Main LW effect of
compensate error! Triplecloudé minus plane-parallel (W m-34 inhomogeneity in
16

60

12
30
3
=2 0 v 8
©
~ _an
Main SW effect 4
of inhomogeneity 5

In Sc regions o 120 180-120 -60 0

latitude

tropical convection

..next step: apply Tripleclouds
in Met Office climate model




Towards a “unified” retrieval scheme

e Most retrievals use no more than two instruments

e Alternative: a “unified” variational retrieval
- Forward model a// observations that are available
- Rigorous treatment of errors

e So far: radar/lidar/radiometer scheme for ice clouds
- Fast lidar multiple-scattering forward model (Hogan 2006)

- "Two-stream source function technique” for forward modeling
infrared radiances (Toon et al. 1989)

- Seamless retrieval between where 1 and 2 instruments see cloud
- A-priori means retrieval tends back towards temperature-
dependent relationships when only one instrument available
e Works from ground and space:
- Niamey: 94-GHz radar, micropulse lidar and SEVIRT radiometer
- A-train: CloudSat radar, CALIPSO lidar and MODIS radiometer



Example from the AMF I n Nlamey
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Results: radar+lidar only
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Results: radar, lidar, SEVERI radiances
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Lessons from Cloudnet

e Easier to collaborate with NWP than climate modelers...

- NWP models (or climate models in NWP mode) much easier to compare
to single-site observations

- Some NWP models are also climate models (e.g. Met Office "Unified
Model") so model improvements can feed into climate forecasts

— Model evaluation best done centrally: it is not enough just to provide
the retrievals and let each modeler test their own model
e Feedback from NWP modelers:

— A long continuous record is much better than short case studies:
wouldn' t change the model based on only a month-long IOP at one site

— Model comparisons would be much more useful if they reported in near-
real-time (<1 month) because model versions move on so quickly!
e Model evaluation is facilitated by unified data formats
(NetCDF)

- Observations: "Instrument Synergy"” product performs most pre-
processing: algorithm does not need to worry about the different
instruments at different sites, or which pixels to apply algorithm to

- Models: enables all models to be tested easily and uniformly



Suggestions...

e A focus/working group on model evaluation?

- To facilitate model evaluation by pushing "consensus” algorithms
into /nfrastructure processing, and providing a framework by
which models may be routinely evaluated

- Include modelers, observationalists and infrastructure people
- Devise new evaluation strategies and diagnostics
- Tackle all the interesting statistical issues that arise
- Promote ARM as a tough benchmark against which any half
decent climate or NWP model should be tested
e Need to agree on what a cloud is...

- Probably not sensible to remove precipitating ice from
observations: lidar shows a continuum between ice cloud and
snow; no sharp change in radiative properties

- By contrast, large difference between rain and liquid cloud



A global network for model evaluation

 Build a framework to evaluate all models at all sites worldwide
— Near-real-time processing stream for NWP models
— Also a “consolidated stream” after full quality control & calibration
— Flexibility to evaluate climate models and model re-runs on past data

e 15+ sites worldwide:
- ARM & NOAA sites: SGP, NSA, Darwin, Manus, Nauru, AMF, Eureka

- Europe: Chilbolton (UK), Paris (FR), Cabauw (NL), Lindenberg (DE),
New: Mace Head (IRL), Potenza (IT), Sodankyla (FI), Camborne (UK)

e 12+ models to be evaluated:
- Regional NWP: Met Office 12/4/1.5-km, German DWD 7/2.8-km
- Global NWP: ECMWF, Met Office, Meteo-France, NCEP
- Regional climate (NWP mode): Swedish SMHI RCA, Dutch RACMO
- Global climate (NWP mode): 6FDL, NCAR (via CAPT project)..
- Embedded models: MMF, single-column models
- Different model versions: change lead-time, physics and resolution

e Via GEWEX-CAP (Cloud and Aerosol Profiling) Group?
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