

CLOWD BBHRP Retrieval Algorithm Intercomparison

Jennifer Comstock David Turner Andy Vogelmann Chaomei Lo Tim Shippert Sally McFarlane Eli Mlawer

Objectives

- Use BBHRP framework to evaluate cloud property retrieval algorithms
 - Evaluate flux residuals at surface and TOA
 - Different CLOWD types
- 2. Develop set of heating rates for CLOWD types
 - Evaluate model simulations
 - Examine heating rate profiles for different types (i.e. Marine BL, NSA)
 - Assess required accuracy for retrievals

LWP <
$$100 \text{ g/m}^2$$

CLOWD Clouds

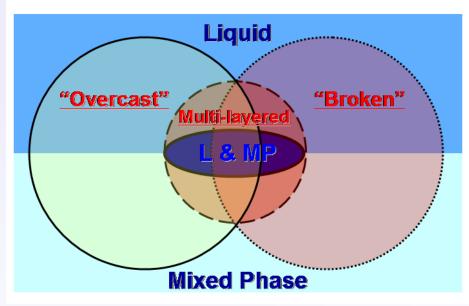
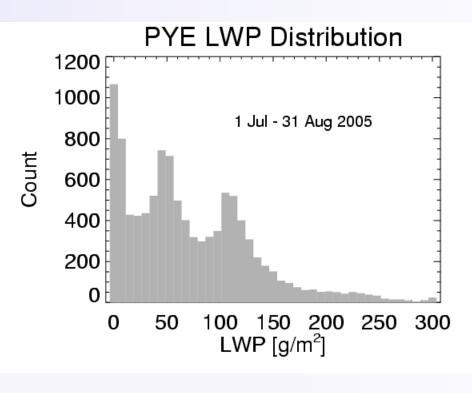


Figure courtesy Andy Vogelmann

CLOWD Cases

- Overcast, single-layered warm cloud
- Broken, single-layered warm cloud
- Broken mixed-phase cloud & Multi-level clouds

CLOWD-BBHRP Study Periods


- 1. Point Reyes (AMF)
 - Overcast
- 2. COPS (AMF)
 - Broken & Overcast (warm)
- 3. NSA
 - Overcast Mixed-Phase
- 4. SGP
 - Multiple cases Nine multi-year data set
 - Inputs for about 3 years are already ready
 - Microbase, Merged Sounding, & Aerosol BE

First Study Period: Pt. Reyes

1 July - 31 September 2005

- Overcast clouds ~85%
 of the time during Jul-Aug
- Screen for overcast cases
- Cloud base was almost always less than 500 m
- Cloud thickness (from radar) was order 300 m
- Only a few short periods with multiple cloud layers

Figure courtesy David Turner

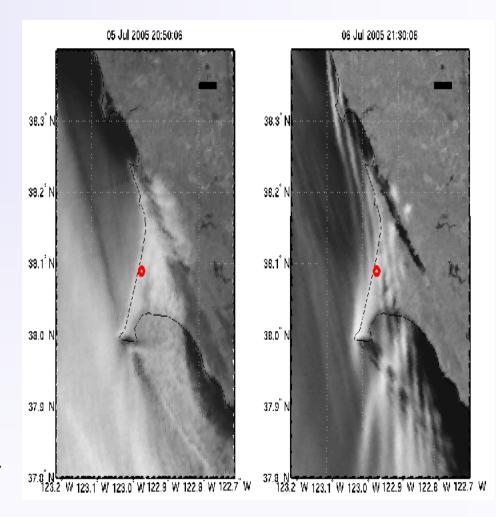
CLOWD Regime	VAPs	SML	LWP Tau Reff	Initiatives	SML	Tau Reff	
Liquid water (Only)		T					
Overcast	MFRSR Diffus		XX	Barnard, Long et al.	X		
				MPL Solar Bkgrnd			
				TC-RSR (in progress)			
Broken (or overcst)	MWRRET			Min direct-beam MFRSR	XN		
				New 90/150s & 3-Chan MWRs	\times		
				2-NFOV			
				Cimel/SWS (Reff in progress)		??	
Mixed Phase							
Broken or overcast	MPL	X		Turner/Aeri+MWR MIXCRA			
Multi-Layered (w/ or mixed phase)							
Broken or overcast	Microbase			Shupe-Microbase		XX	
				Spectral Radar	? 1	2 🗙	
				Zhien Wang Multi-spectral			
				Shupe/Turner			

KEY	
S="Small"; LWP < 25 gm ⁻²	
M="Medium"; 25 < LWP < 100 gm ⁻²	
L="Large"; LWP > 100 gm ⁻²	
No retrieved information	
🔽 Uncertain quality	
Good quality, maybe by indirect method	All tru
Best quality	u u
Under development; Anticipate high quality	

Table courtesy Andy Vogelmann

All methods might not have been tested on true CLOWD types (the really thin stuff)

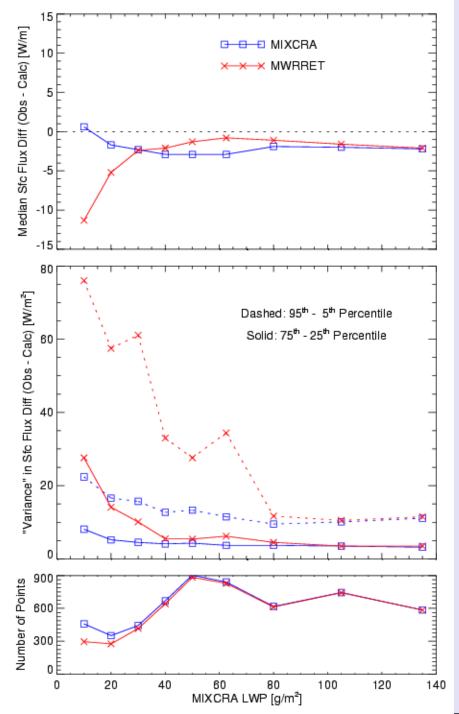
Current Progress


Collect necessary inputs

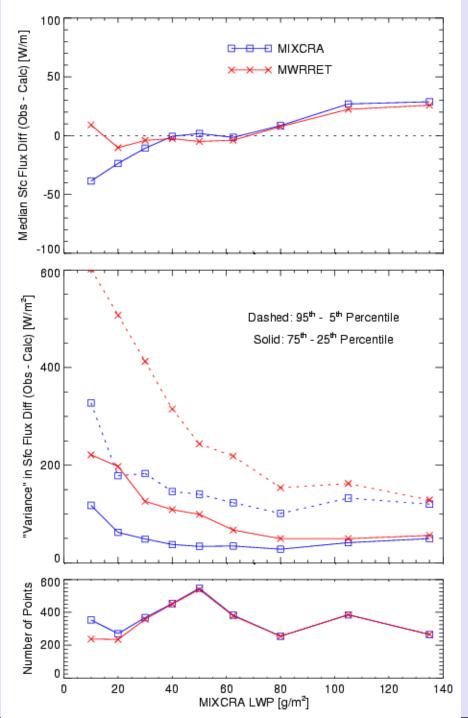
 Cloud properties
 Aerosol distribution
 Surface Albedo

 Put cloud and aerosol properties etc. into netcdf file formats
 Acquire surface and TOA flux observations

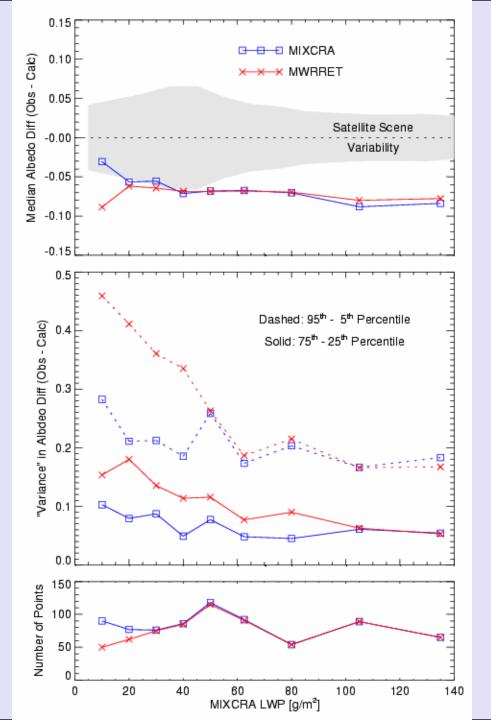
for residual comparisons


- Surface radiometers
- TOA fluxes issues due to inhomogeneous cloud field

Analysis Considerations



- Distribution of mean layer quantities into vertical profile
 - Cloud boundaries from lidar/radar measurements (courtesy M. J. Bartholomew)
 - Assume adiabatic profile for vertical distribution (0.9 adiabaticity)
- Choose 30 min cloudy periods (overcast)
- Assume no aerosols as a first approx.
- Surface Albedo
 - No upwelling MFR measurements available
 85% land, 15% water
 - Need Albedos for the 14 RRTM shortwave bands (Eli Mlawer)


Surface LW Closure Exercise (Turner)

- Compare MIXCRA and MWRRET cloud props
- Use cloud properties in 1-D RT model to compute surface LW flux
- Compare calcs with the pyrgeometer obs
- Mean bias is smaller for MIXCRA
- Variance in flux residuals is significantly smaller for MIXCRA than MWRRET
- Similar results day and night

Surface SW Closure Exercise (Turner)

- Similar exercise as LW closure
- No aerosols included in the calculations
- MIXCRA shows negative bias, but small amount of aerosol would improve results (and worsen MWRRET results)
- Variance in MIXCRA results is much lower than variance in MWRRET results for LWP below 120 g/m²

TOA SW Closure Exercise (Turner)

- Similar exercise as SW surface closure
- No aerosols included in the calculations
- Both methods show negative bias, but small amount of aerosol would improve result slightly
- Unable to get agreement with both surface and TOA by changing LWP
- Variance in MIXCRA results is much lower than variance in MWRRET results for LWP below 100 g/m²

Next Steps

- Finalize input parameters
- > Obtain TOA Fluxes
 - Using hand navigation improves comparison, but is time consuming
 - > Approach will be to compare to a hand full of cases from Mandy to assess uncertainty

> Collect retrievals from other participants!