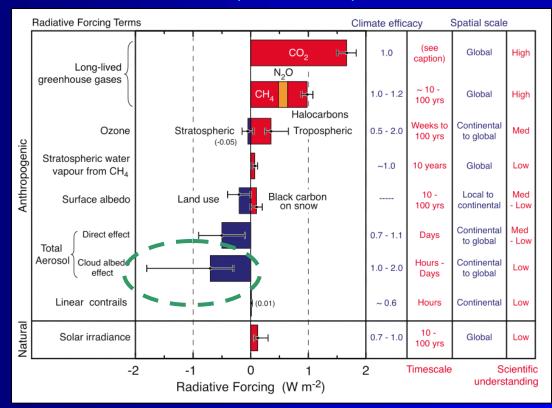
Lawrence Livermore National Laboratory

Sensitivity of Aerosol Indirect Effects to Cloud Parameterizations in Short-Range Weather Forecasts with CAM3 Over the Southern Great Plains during May 2003 IOP

Catherine Chuang, James Boyle Shaocheng Xie and James Kelly

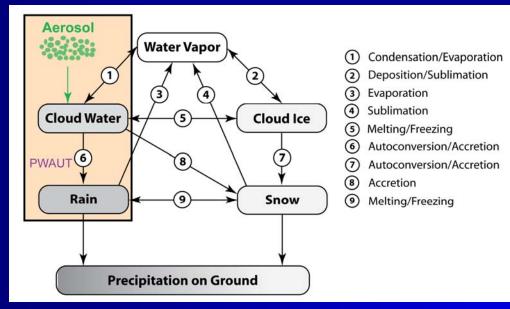

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

LLNL-POST-401948 March **11**, **2008**

Why are aerosol/cloud interactions important?

• The greatest uncertainty in the assessment of radiative forcing arises from the interactions of aerosols with clouds.

Radiative forcing of climate between 1750 and 2005 (IPCC, 2007)


Sources of uncertainty

- Emissions
- Gas to particle conversion
- Aerosol size distribution
- <u>Linkage between aerosols</u> and clouds

Treatments of aerosol/cloud interactions in GCMs

Cloud microphysics scheme in CAM3.5 (RK version)

Cloud Drop Nucleation

The process to activates aerosols to form cloud droplets.

Autoconversion

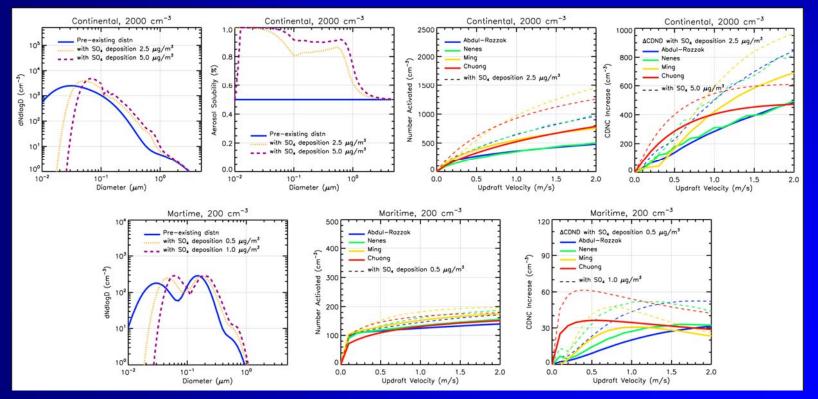

The process to initiate raindrops by collisions and coalescence of cloud droplets.

Previous studies on the sensitivity of aerosol/cloud interactions to model treatments

- Yearly GCM simulations (Lohmann et al., 2000; Chuang et al., 2002; Rotstayn and Liu, 2005; Penner et al., 2006;)
- Daily SCM simulations (Menon et al., 2003;)
- Offline calculations (Chen and Penner, 2005;)

Methodology of this study

- Under the CAPT framework, CAM3 is run in short-range weather forecasts (~days) initialized by realistic data (i.e., NASA GEOS4).
- The short-range weather forecasts over SGP during May 2003 IOP are evaluated with ARM data.
- Examine the variations of cloud properties and radiative fluxes with different treatments of cloud drop nucleation and autoconversion.
- Assess the sensitivity of aerosol indirect effects.


The CAPT (Climate Change Prediction Program -ARM Parameterization Testbed) is analogous to a common NWP approach for development of forecast models. It is useful for diagnosing parameterization problems that may produce systematic model errors on climate time scales . (Phillips et al., 2004)

Nucleation parameterizations evaluated in this study (1) Abdul-Razzak and Ghan, 2002; (2) Nenes and Seinfeld, 2003 (3) Ming et al., 2006; and (4) Chuang et al., 2002

- L
- Internally mixed aerosols. Aerosol size distribution and solubility vary with the deposition of sulfate on pre-existing particles (Chuang et al., 1997, 2002).
- Variations in the increase of Ndrop associated with sulfate among different parameterizations are not necessarily proportional to their differences in Ndrop.
 - -- higher Ndrop ≠ higher sulfate indirect forcing

Variations in predicted cloud droplet concentrations

Ľ

Autoconversion schemes evaluated in this study

Beheng (1994)

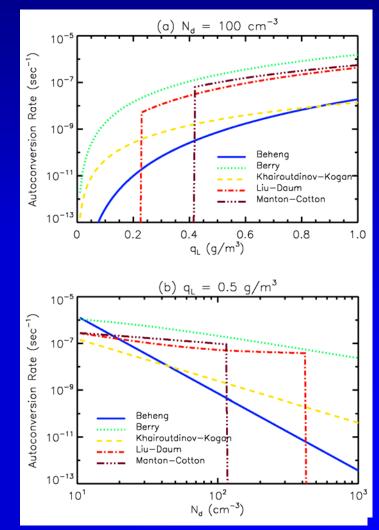
$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = 6 \times 10^{25} n^{-1.7} \rho_a^{3.7} N_c^{-3.3} q_l^{4.7}$$

Berry (1968)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = \frac{\rho_a q_l^2}{1.2 \times 10^{-4} + \frac{1.596 \times 10^{-12} N_c}{D_o \rho_a q_l}}$$

Khairoutdinov-Kogan (2000, CAM3 MG)

 $\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = 1350 \ q_l^{2.47} \ N_c^{-1.79}$

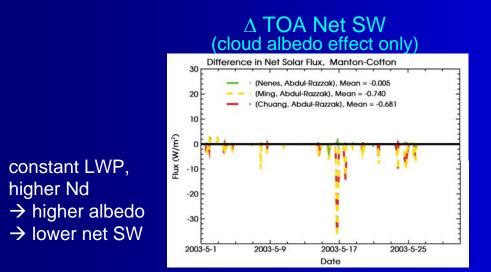

Liu-Daum (2004)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = \kappa_2 \left(\frac{3\rho_a}{4\pi\rho_w}\right)^2 \beta_6^6 \frac{q_l^3}{N_c} \operatorname{H}(R_6 - R_{6c})$$

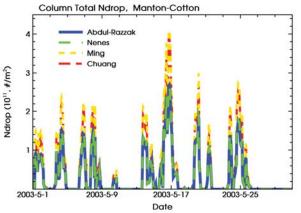
Manton-Cotton (1977, CAM3 Default)

$$\left(\frac{\partial q_r}{\partial t}\right)_{\text{auto}} = C_{l,aut} q_l^2 \frac{\rho_a}{\rho_w} \left(\frac{q_l \rho_a}{\rho_w N_c}\right)^{1/3} \mathsf{H}(r_{3l} - r_{3lc})$$

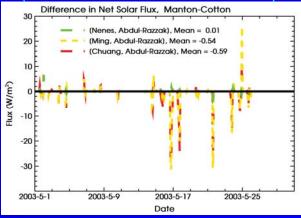
Autoconversion Rate



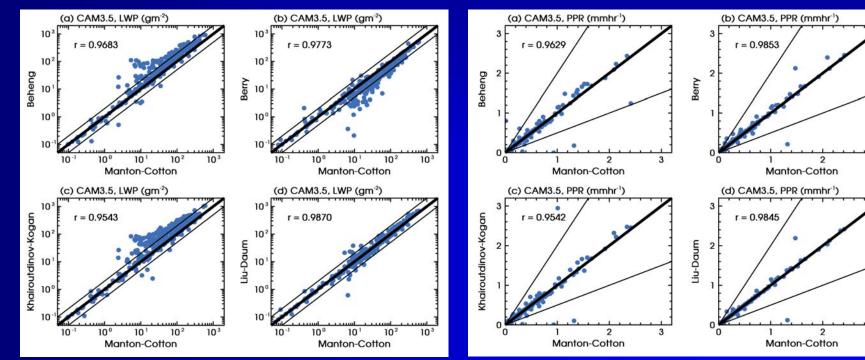
Sensitivity to Nucleation Parameterization (with autoconversion scheme from Manton-Cotton)



CAM3.5 with prescribed aerosol climatology was initialized and performed 3 day forecasts for the period of May 2003 Aerosol IOP conducted over the SGP site.


 Results shown here are the composite of 6-30 hour forecasts.

Column Ndrop (diagnostically derived)


Δ TOA Net SW (cloud albedo + lifetime effects)

similar pattern, for some conditions ∆Nd modify cloud fraction & lifetime, higher net SW

Sensitivity to Autoconversion Scheme (1) (with nucleation parameterization from Abdul-Razzak)

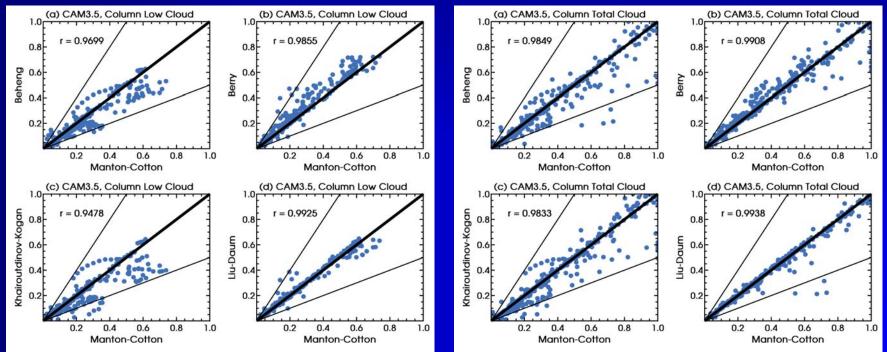
Scatter plots between modified and default (Manton-Cotton) schemes

Liquid Water Path

Precipitation Rate

3

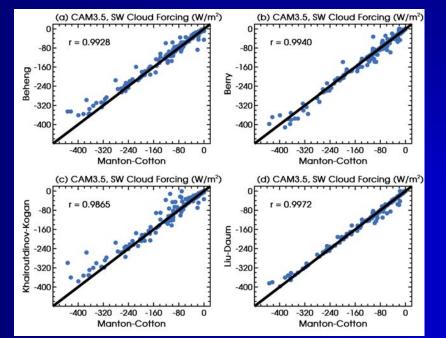
3


higher autoconversion rate \rightarrow lower LWP

Sensitivity to Autoconversion Scheme (2) (with nucleation parameterization from Abdul-Razzak)

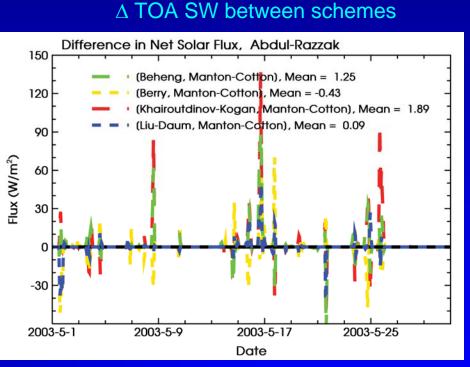
Assume maximum-random overlap, P_{Low cloud} > 700 mb

Low Cloud Cover



higher autoconversion rate → lower LWP (higher rain mixing ratio)
Evaporation of rain → higher RH
→ higher cloud cover

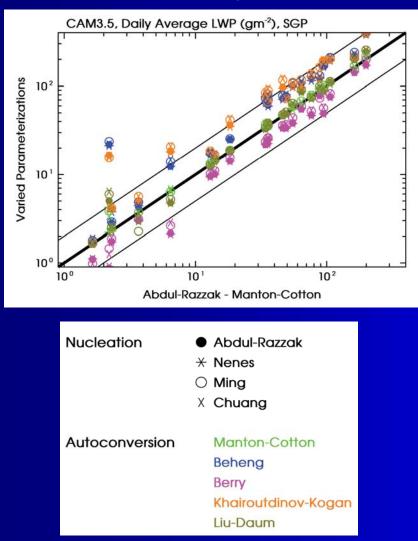
Sensitivity to Autoconversion Scheme (3) (with nucleation parameterization from Abdul-Razzak)



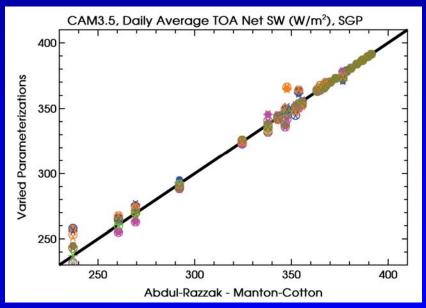
SW Cloud Forcing

higher autoconversion rate

- \rightarrow lower LWP, higher cloud fraction
- \rightarrow higher (negative) SW cloud forcing
- \rightarrow Lower TOA Net SW



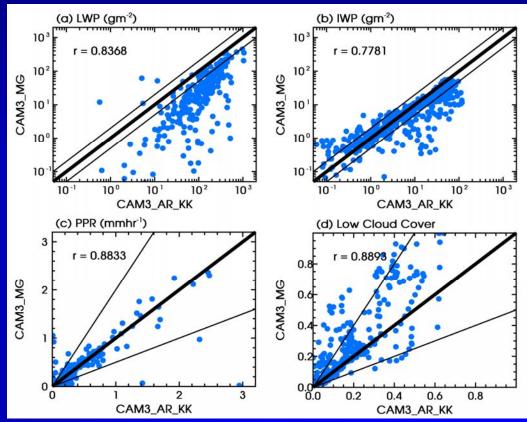
- Hourly variations between different schemes are large (up to 140 W/m²)
- Monthly average is only up to 2 W/m² due to the competition between LWP and cloud faction.


Combined Sensitivity

Daily average LWP

TOA SW between parameterizations (cloud albedo + lifetime effects)

Comparison between the modified CAM3.5 default cloud microphysics and Morrison-Gettelman package

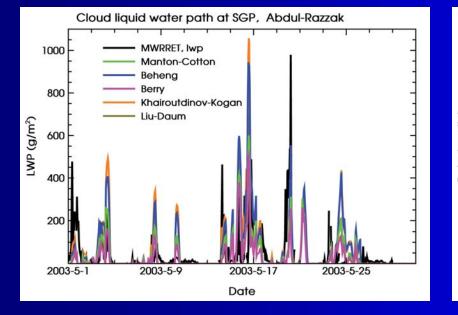

U

Same

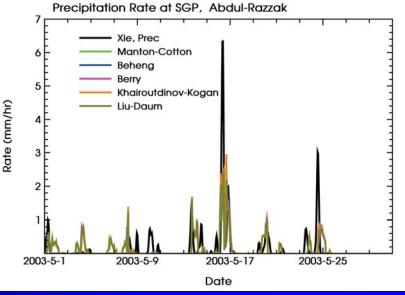
- Aerosol mass concentrations
- Nucleation parameterization: Abdul-Razzak
- Autoconversion scheme: Khairoutdinov-Kogan

Different

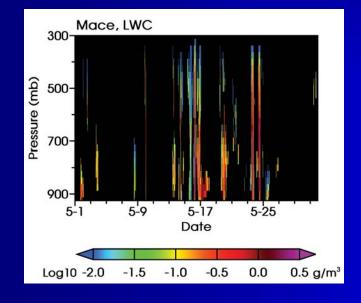
- Aerosol size distribution
- Prognostic treatment for number concentrations of cloud drops and ice particles in MG

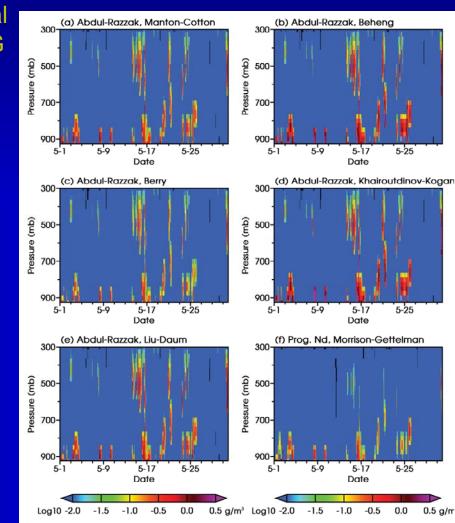

- LWP and IWP are lower for MG
- Low cloud cover is higher for MG

Compare to ARM Data (1)


- LWP: MWRRET (Microwave Radiometer Retrievals) best estimate
 PI Data Product: D. Turner (http://iop.archive.arm.gov/arm-iop/0pi-data/turner/)
- Precipitation Rate: Arkansan Basin Red River Forecast Center rain gauge data adjusted by radar measurements

PI Data Product: S. Xie (http://iop.archive.arm.gov/arm-iop/0pi-data/xie/)

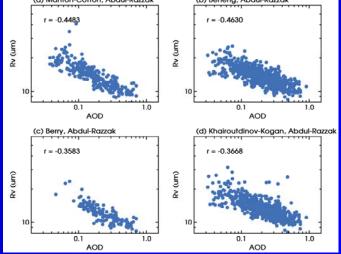

LWP


Precipitation Rate

Compare to ARM Data (2)

 LWC: Mace's Cloud Microphysical Properties regridded for CPM WG

Summary


- Nucleation parameterizations by Nenes and Abdul-Razzak yield comparable TOA SW at SGP.
- Similar forecasts with autoconversion schemes by Manton-Cotton and Liu-Daum.
- Cloud properties and radiative fluxes are more sensitive to the treatment of autoconversion than that for cloud nucleation.
- During May 2003 IOP, the average of CAM3 calculated TOA SW at SGP differs by up to 2 W/m² with different treatments of aerosol/cloud interactions.
- Next step:

Sensitivity of IE (= $dln R_e / dln \tau_a$) to cloud parameterizations will be explored in global scale.

• Future work:

Apply CAM3 with interactive aerosols . Compare IE with those derived from ARM data at SGP.

$\frac{\text{IE for LWP} > 0.5 \text{ kg/m}^2}{(a) \text{ Monton-Cotton, Abdul-Razzak}}$ (b) Beheng, Abdul-Razzak (c) Beheng, Abdul-Razzak (c) Beheng, Abdul-Razzak (c) Beheng, Abdul-Razzak

