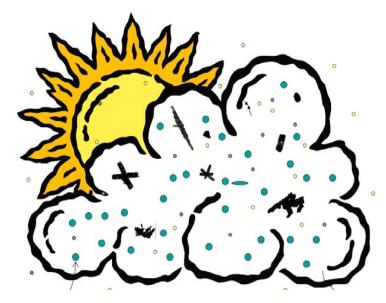
Indirect and Semi-Direct Aerosol Campaign (ISDAC)

The Influence of Arctic Aerosol on Clouds

Pls: Steve Ghan, Greg McFarquhar, Hans Verlinde

ARM AVP: Beat Schmid, Greg McFarquhar, John Hubbe, Debbie Ronfeld

In situ measurements: Sarah Brooks, Don Collins, Dan Cziczo, Manvendra Dubey,

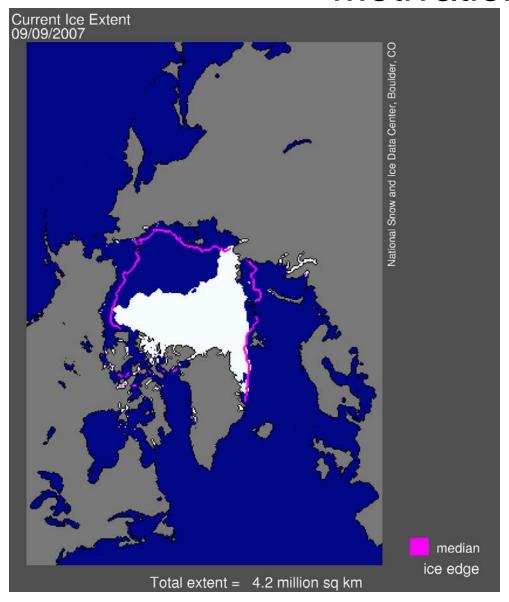

Greg Kok, Alexei Korolev, Alex Laskin, Paul Lawson, Peter Liu, Claudio

Mazzoleni, Ann-Marie McDonald, Greg McFarquhar, Walter Strapp, Alla Zelenyuk

Retrievals: Connor Flynn, Dan Lubin, Mengistu Wolde, David Mitchell, Matthew Shupe, David Turner

This is a second to the second

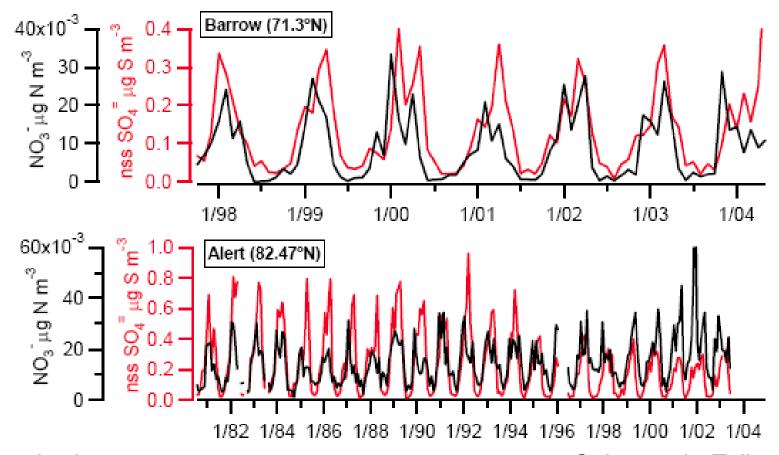
Modeling: Ann Fridlind, Xiaohong Liu, Shaocheng Xie



Barrow, Alaska

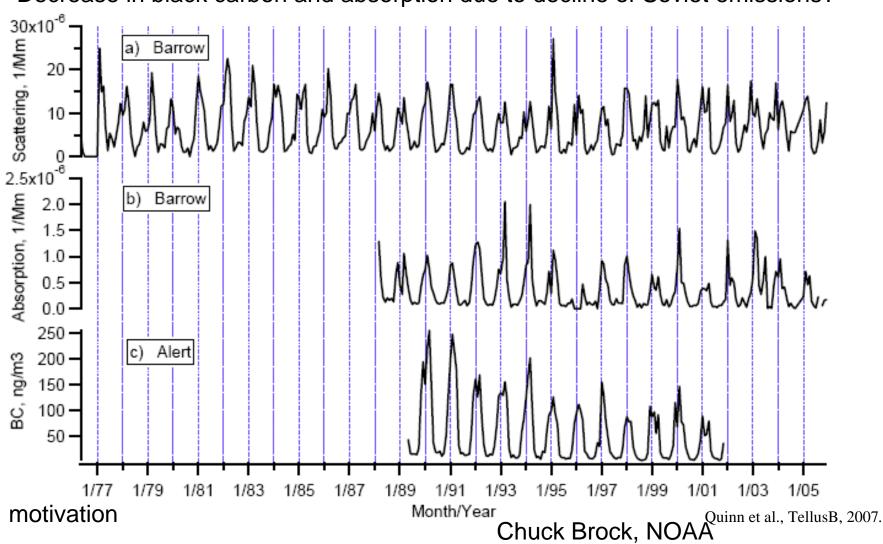
April 2008

Motivation

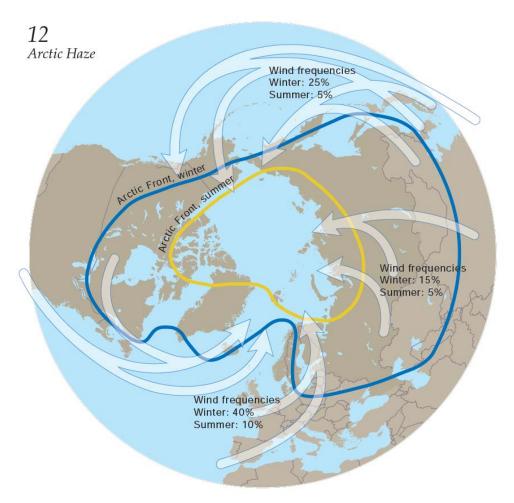


- Summertime Arctic sea ice has decreased dramatically in recent years, beyond climate model predictions.
- The Arctic is projected to be ice free during summer within 10-20 years.
- The role of clouds and aerosols in the loss of sea ice is not understood.

Chuck Brock, NOAA


Submicron arctic aerosol concentrations vary widely with season

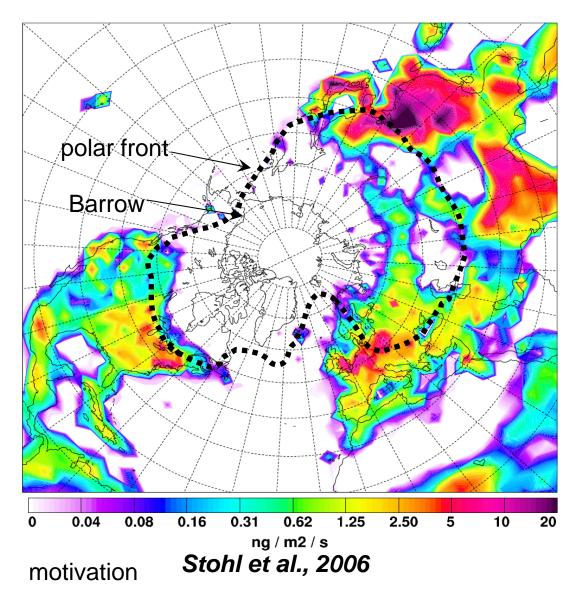
- Peak in late winter/early spring
- Haze spans the Arctic poleward of the Arctic front
- Mostly sulfate, but unknown contributions from organic and dust



Similar annual cycle for scattering, absorption, black carbon

Decrease in black carbon and absorption due to decline of Soviet emissions?

The Role of the Arctic Front


Arctic Monitoring and Assessment Programme, 2006 motivation

Sources for surface haze generally lie within the Arctic front

Layers aloft may have sources further south (if they can survive cross-front processes)

Chuck Brock, NOAA

Anthropogenic sources of soot (industrial and biofuel)

Sources in NE
Europe and NE
China are
consistently within
or near the mean
position of the
Arctic front.

Motivation

- The ARM Program established a permanent site at the North Slope of Alaska for several reasons:
 - Climate models suggest a large arctic climate sensitivity due to snow/ice albedo feedback. Snow and sea ice melt each year at the NSA. ARM measurements there could improve understanding of snow and ice albedo feedbacks and how they interact with clouds.
 - The atmosphere at the NSA is colder and drier than at the other ACRF sites, thus permitting important tests of radiative transfer codes using surface-based measurements.
 - Of the three permanent ACRF sites, stratiform clouds are most prevalent at the NSA. Stratiform clouds play important roles in cloud feedback.
 - Glaciated and mixed-phase clouds are common at the NSA, so that studies of glaciation are more convenient at the NSA than at the other sites.
 - Aerosols have a strong seasonal cycle at the NSA. This permits studies
 of both direct and indirect effects of aerosols.

Ice Formation Mechanisms: April vs October

ice concentrations near or below ice nucleus concentrations; mostty pristine crystals

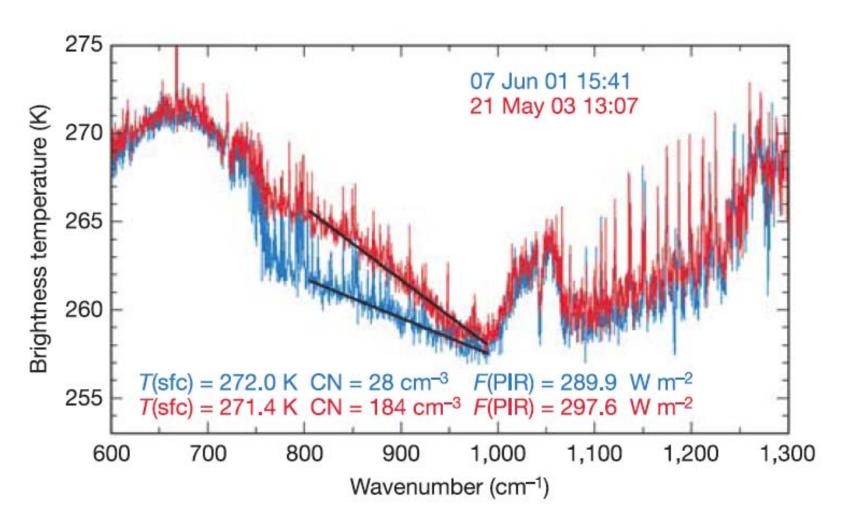
Small droplets at cloud top, possible ice, no precipitation

- Droplet concentrations > 100 cm⁻³
- Maximum effective droplet radius < 10 μm
- · Ice concentrations nil or a few per liter

TYPE V

ice concentrations at or above ice nucleus concentrations due to fragmentation of crystals, freezing drops

Large droplets at cloud top, ice, precipitation


- Droplet concentrations typically < 100 cm⁻³
- maximum effective radius > 10 μm
- Maximum threshold droplet diameter > 20 μm
- Ice concentrations 10-100 per liter

Type IV conditions expected during ISDAC in April 2008.

Type V conditions encountered during M-PACE in October 2004.

Rangno & Hobbs (2001)

A Longwave Aerosol Indirect Effect

1. How do properties of the Arctic aerosol during April differ from those measured during M-PACE in October?

- Are CCN and IN concentrations in the Arctic higher during April than in October?
- What are the physical and chemical properties, including degree of internal mixing, of the arctic CCN and IN during April?
- How do the vertical distributions of the aerosol during April differ from those during October?

2. To what extent do the different properties of the Arctic aerosol during April produce differences in clouds?

- Do the more polluted conditions during April in the Arctic enhance droplet number, crystal number, cloud optical depth, and longwave emissivity?
- How does the measured variation of Arctic IN with temperature and supersaturation compare against parameterizations used in models?
- Does glaciation enhancement by increased IN dominate glaciation suppression by droplet size reduction associated with increased CCN?
- What is the relationship between IN and ice crystal number and what role does ice multiplication play in determining ice crystal number concentration?
- How do differences in large-scale meteorological forcing and surface conditions affect how cloud properties differ in the polluted April compared with October?
- What role does aerosol absorption of sunlight play in the dissipation of springtime arctic clouds?

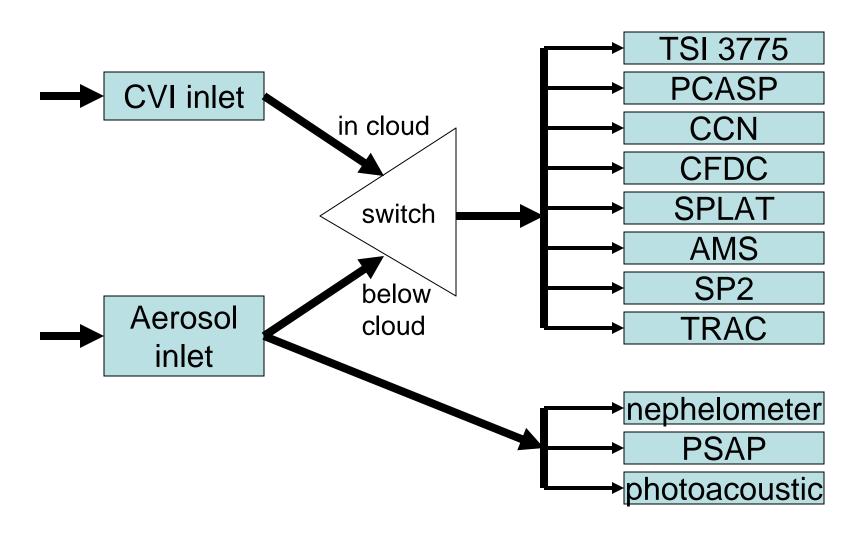
- 3. How well can cloud models and the cloud parameterizations used in climate models simulate the sensitivity of Arctic clouds and the surface energy budget to the differences in aerosol between April and October?
- Can cloud models and parameterizations simulate the seasonal differences in the droplet number, crystal number, glaciation, riming, droplet dispersion, cloud optical depth, and longwave emissivity in the Arctic?
- Can models and parameterizations successfully simulate the partitioning of cloud water and cloud ice in arctic clouds and the longevity of springtime arctic clouds?

4. How well can long-term surface-based measurements at the ACRF NSA locale provide retrievals of aerosol, cloud, precipitation, and radiative heating during April in the Arctic?

 How does the performance of these retrievals depend on stratification, cloud thickness, and cloud phase?

Science of Opportunity

- Small ice crystal issue
- Long-lived mixed phase clouds
- CloudSat and Calipso validation


Instruments on Aircraft

Instrument	Measurements	Investigator		
Atmospheric State				
3 Rosemont 102 probes	Temperature	Mengistu Wolde		
NCAR reverse flow probe	Temperature	Walter Strapp		
EGG chilled mirror	Humidity	Walter Strapp		
hygrometer				
LICOR	Water vapor and CO ₂ mixing ratio	Mengistu Wolde		
Rosemount 858 gust probe	Vertical velocity	Mengistu Wolde		
	Liquid/Super-cooled Liquid			
Rosemount icing (RICE) probe	Detects supercooled liquid	Walter Strapp		
Vibrameter	Detects supercooled liquid	S. Cober		
Nevzorov LWC/TWC probe	Liquid and total condensed water concentration	Alexei Korolev		
PMS CSIRO King probe	Liquid water concentration	Walter Strapp		
	Cloud Microphysics			
DMT Counterflow Virtual	Total water concentration	Walter Strapp		
Impactor				
DMT Cloud, Aerosol and	T, liquid water and N _d , cloud particle size	Greg McFarquhar		
Precipitation Spectrometer	distribution (0.5 Š 1500 μm)			
SPEC Cloud Particle Imager	Cloud particle images (15 Š 2500 µm)	Greg McFarquhar		
		Paul Lawson		
PMS FSSP-100X	Small particle spectrum (3 Š 45 μm)	Walter Strapp		
PMS 2D2C	Imaging cloud particles (25 Š 800 μm)	Walter Strapp		
SPEC 2DS	Cloud particle size distribution (50-1000 µm)	Paul Lawson		
PMS 2DP	Imaging cloud particles (200 Š 6400 μm)	Walter Strapp		
DMT CDP	Cloud droplets (2-50 µm)	Greg Kok		
Korolev Cloud Extinction Meter	Cloud Extinction	Alexi Korolev		

Aerosol Instruments on Aircraft

Instrument	Measurement	Investigator	
Aerosol			
Condensation Nuclei Counter (TSI 3775)	Total particle concentration (> 3 nm)	Peter Liu	
Ultra High Sensitivity Aerosol Spectrometer (UHSAS)	Aerosol size distribution (100-3000 nm)	Peter Liu	
DMT CCN counter	CCN concentration	Alex Laskin	
Continuous Flow Diffusion Chamber	Ice nucleus concentration	Sarah Brooks	
Radiance Particle/Soot Absorption Photometer (PSAP)	Optical absorption	John Ogren	
Nephelometer	Optical scattering	John Ogren	
3 laser photo-acoustic spectrometer (PAS)	Aerosol absorption and scattering (405, 532 and 781 nm)	Manvendra Dubey	
Single Particle Laser Ablation Time of flight mass spectrometer (SPLAT)	Single particle size-resolved composition (refractory and non-refractory material)	Alla Zelenyuk	
Time-Resolved Aerosol	Time-resolved substrate for lab analysis (0.1 Š	Alex Laskin	
Collector (TRAC)	7 μm)		
Aerosol Sample Collection			
Aerosol inlet	Isokinetic aerosol inlet	Peter Liu	
Counter-flow Virtual Impactor	Separation of residual aerosol	Ann-Marie McDonald	

Aerosol Instrument Configuration

Radiometers and Remote Sensing on Aircraft

Instrument	Measurement	Investigator	
Radiometers			
Infrared Thermometer	Cloud emissivity; Nadir view, narrow	Walter Strapp	
	field of view		
Broadband visible radiometers	Hemispheric radiometers, zenith and	Chuck Long	
	nadir		
Broadband Pyrgeometers	Hemispheric infrared fluxes, zenith and	Chuck Long	
	nadir view		
Remote Sensing			
ProSensing up-looking G-band	Water vapor and liquid water path	Mengistu Wolde	
radiometer	above aircraft		
Ka-band up/down looking radar	Radar cross sections	Walter Strapp	
W-band Doppler radar, dual	radar cross section, hydrometeor type	Mengistu Wolde	
polarization, up/down/side	identification		
looking			

Surface Measurements

Instrument
Radiosonde
Microwave radiometer
Microwave radiometer profiler
915 MHz radar wind profiler/RASS
Vaisala Ceilometer
Millimeter cloud radar
Micropulse lidar (polarized)
AERI

Cimel sunphotometer Multi-Filter Shadowband Radiometer

Humidified Tandem DMA

 $\boldsymbol{ASD}\ spectroradiometer$

Normal incidence multifilter radiometer Upviewing radiometers Downviewing radiometers Hotplate rain gauge Measurements

Temperature, humidity, winds profiles Water vapor path, liquid water path Temperature, humidity, LWC profile Winds, virtual temperature profile

Cloud base altitude

Cloud liquid water, cloud ice content profiles Aerosol backscatter profile, depolarization ratio Temperature, humidity profiles, water path, optical depth, and effective radius of the ice and water component of mixed-phase clouds

Aerosol optical depth

Aerosol optical depth at multiple wavelengths

cloud optical depth, cloud fraction

Size distribution of aerosol number &

hygroscopicity

Cloud optical depth, effective radius

Aerosol optical depth

Downward longwave, solar irradiance Upward longwave, solar irradiance

Precipitation

Applications

Т	T 4 D 4	77 10 1 40 1 4	T 1
Experiment	Input Data	Validation data	Lead
CCN closure	Aerosol size distribution	CCN concentration	Don Collins
	Hygroscopicity size dist		
Droplet number	Aerosol size distribution	Droplet number concentration	Steve Ghan
closure	Hygroscopicity size dist		
	Vertical velocity		
Cloud water closure	Cloud particle size distribution	Total water content (TWC)	Greg McFarquhar
Cloud extinction closure	Cloud particle size distribution	Cloud extinction	Greg McFarquhar
Aerosol extinction closure	Aerosol size distribution Aerosol composition	Aerosol extinction	Claudio Mazzoleni
Cloud modeling	Aerosol size distribution	Cloud particle size distribution	Ann Fridlind
	Hygroscopicity size dist	Liquid water content (LWC)	
	Ice Nuclei conc (T,S)	TWC	
	Downward longwave at top	• • • •	
	u,v, T, q	precipitation	
	Surface fluxes & large-scale forcing profiles	Cloud extinction	
Semi-direct effect	Same as for cloud modeling, plus the following	Same as for cloud modeling	Ann Fridlind
	Aerosol absorption		
	Aerosol scattering		
Ice crystal nucleation	Size-resolved composition of residual aerosol	IN(T,S)	Sarah Brooks
Relation	IN(T,S _i)	Crystal size and habit	Greg McFarquhar
between IN and	temperature	Cloud particle size	_
ice crystal concentration	humidity	distribution	
	water-ice interface		

Retrieval Applications

Experiment	Input Data	Validation Data	Lead
Aerosol extinction	Aerosol attenuated backscatter	Aerosol scattering	Connor Flynn
retrieval	Dackscatter -	Aerosol absorption	1
CCN retrieval	Aerosol backscatter	CCN	Steve Ghan
	Aerosol scattering		
	Relative humidity		
	Surface CCN		
	humidification function		
MMCR	Radar reflectivity	LWC	Matthew Shupe
retrievals		TWC	
MWR retrievals	Microwave radiance	LWC	Dave Turner
AERI retrievals	Infrared radiance spectrum	TWC	Dave Turner
		LWP	
		Cloud particle size	
		distribution	
		Cloud extinction	
ASD retrievals	Solar radiance spectrum	Same as for AERI	Dan Lubin & Andrew
			Vogelmann
MFRSR	Direct and diffuse radiance	Aerosol scattering and	Qilong Min
retrievals	at multiple wavelengths	absorption	
BBHRP	Vertical profiles of cloud	Net longwave irradiance	Eli Mlawer
	properties, T, q	profile	
Full Flux	Surface direct and diffuse	Cloud optical depth	Chuck Long
Analysis	SW and LW radiance,		
	temperature		

Cloud Modeling: M-PACE vs ISDAC

- ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE
- Separate influence of different boundary conditions from different aerosol by performing four simulations:
 - M-PACE aerosol and boundary conditions
 - M-PACE aerosol and ISDAC boundary conditions
 - ISDAC aerosol and M-PACE boundary conditions
 - ISDAC aerosol and boundary conditions.

Cloud Modeling: Semi-Direct Effect

Run with and without radiative heating by aerosol

Deployment

- Instruments mounted on Canadian National Research Council Convair-580 aircraft
- 11 sorties out of Fairbanks during period April 1- 30
- Each sortie 8.5 research flight hrs: fly to Barrow, sample, refuel, sample, return to Fairbanks
- Total of 94 research flight hours

Flight Patterns

- Horizontal transects
 - above, below or between cloud
 - in cloud
- Spiral profiling
- Missed approaches at Barrow airport
- Porpoising
- Coordination with other aircraft
 - NASA ARCTAS (P-3 and B200)
 - NOAA ARCPAC (WP-3D)

