Comparison of UV-RSS Spectral Measurements and TUV Model Runs for the May 2003 ARM Aerosol Intensive Observation Period

Joseph Michalsky (NOAA) and Piotr Kiedron (CIRES)

- The UV-Rotating Shadowband Spectroradiometer
- Model inputs (most are extrapolations from visible) to the Tropospheric UV Visible (TUV) RT model
- · The trouble with ET spectra
- Comparisons of diffuse and direct transmittance

Deployments

10/97 Intercomparison, Table Mt., CO Prototype NMOS: 512 pixels

09/01 Diffuse IOP, SPG, OK 05/03 Aerosols IOP, SPG, OK 06/03 Intercomparison, Table Mt., CO

UV-RSS optical layout and ray-trace

RSS104 resolution and pixel-wavelength dependence

RSS104 Slit function

UV-RSS cosine response

 $\iint \sin(\xi)\cos(\xi)(A_R(\xi,\alpha)-1)Rd\alpha d\xi < 0.5\%$

Tropospheric UV Visible (TUV) RT Model (Madronich@NCAR)

- Run at 0.1 nm resolution from 300-360 nm
- Bernhard ET spectrum (JGR-Atmos 2004)
- Inputs: 550 nm ssa; 550 nm asymmetry parameter; AOD and alpha based on τ @ 332, 415, and 500 nm; ozone was average of up to five measurements; assumed 0.015 surface albedo

Date	LST	solar elv (degs)		20 (cm)	ozor (DU		ssa	g	alpha t	au (55	0 nm)
11-May-03	920	4	15.1	1.09		320	0.971	0.573	1.047		0.078
11-May-03	1230	→ 7	71.3	1.14		320	0.944	0.582	0.69		0.084
11-May-03	1500	5	51.5	1.13		320	0.957	0.552	0.606		0.07
12-May-03	730	2	23.3	1.53		328	0.883	0.572	1.25		0.074
12-May-03	950	5	51.1	1.54		328	0.934	0.562	1.308		0.077
22-May-03	800	3	30.4	2.43		326	0.939	0.66	1.08		0.18
28-May-03	1800		17.9	2.71		322	0.951	0.619	1.108	-	0.183

Same as Figure 2 except Asymmetry Parameter Higher by 0.04

Same as Figure 2 except SSA = 0.901, 0.871, 0.841

11 May 2003 @ 15:00; AOD(550 nm) = 0.07; SZA = 38.5 degs; SSA = 0.957

12 May 2003; 07:30 LST; AOD(550 nm) = 0.074; SZA = 66.7 Degs; SSA = 0.883

22 May 2003; 08:00 LST; AOD = 0.18; SZA = 59.6 Degs; SSA = 0.939

ET Spectra at UV-RSS Resolution from Langleys and Bernhard

Future Efforts

- Check slit functions over UV spectrum
- Exploit retrieval potential, specifically, ozone retrievals with 3 available x-sections
- ϖ_0 (ssa) retrievals in UV
- Validate models with UV inputs