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Background and Objectives

Many airborne minerals have absorption features in
the thermal infrared (8-13 um)

These absorption features can be used to determine
the “radiatively relevant” mineral composition of
atmospheric dust

Optical depth and effective radius are also important
parameters that control the radiative impact of the
dust

Objectives:

Retrieve the 1, R, and composition of dust using AERI obs
to characterize the dust properties over Niamey

Correlate these microphysical properties with atmospheric
conditions

Use retrievals to help evaluate aerosol transport models

Investigate the role of dust on the (IR) atmospheric heating
rate profile and BL structure



Refractive Indices

* |In order to separate contributions from different minerals
using AERI obs, each must have a unigue absorption
band in 8-13 um band

— Must avoid bands that are opaque due to H,O or CO,, or
contaminated by O,

o Kaolinite, gypsum, and guartz are common minerals in

dust over Africa

 Hematite is also commonly found, but does not have an
absorption band in the 8-13 um window
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Approach

Downwelling IR radiance is sensitive to dust
composition, optical depth, and effective radius

— To detect differences in composition, each mineral must absorb
In different spectral regions

— Able to distinguish between quartz, kaolinite, and gypsum using
IR data

Performed 6 sets of retrievals on manually identified

cloud-free periods

— Quartz-only, kaolinite-only, gypsum-only

— Quartz+kaolinite, quartz+gypsum, kaolinite+gypsum

Retrieval with the best statistical fit for each sample was
identified

Results analyzed as function of season and local
meteorology



Examples of Spectral Fits
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 Dust assumed to be
mixture of kaolinite
and gypsum in this
example

e Use of single
mineral results in
poorer fit In some
spectral regions

 Significant IR forcing
at surface due to
aerosol
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Optical Depth or Effective Radius

Time-series of Dust Optical
Depth and Effective Radius
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CIMEL AOT (1.02 pm)
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Comparisons with Aeronet
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500 m Back‘rr'ajecfor'ies over
Niamey in 2006
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Distribution of Dust Composition

Kaolinite-only 17.8% 29.9% 54.2% 13.7%  20.0%
Gypsum-only 5.9% 4.1% 18.1% 4.0% 5.7%
Quartz-only 0.0% 0.0% 0.0% 0.0% 0.0%
Kaolinite+Gypsum 68.7% 37.6% 19.0% 74.6%  66.6%
Kaolinite+Quartz 7.3% 8.2% 7.3% 7.5% 7.5%
Quartz+Gypsum 0.2% 0.1% 1.5% 0.1% 0.3%
Number of retrievals 5522 1999 1220 8014 16755
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Dependence of Kaolinite Fraction
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Dependence of Kaolinite Fraction
on Trajectory Direction
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» Gray: distribution of F,_

» Black: subset of F,, where trajectory was
from the eastern octave



Impact of Dust Composition on TOA
and Surface LW Radiative Flux

Downwelling Surface Longwave Flux
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Summary

Retrieved infrared optical depth, effective radius, and dust
composition from AERI observations at NIM

— Only used observations from 8-13 um, and assumed the dust
particles to be spherical

— Dust assumed to be kaolinite, quartz, gypsum, or some
combination of any two (external mixtures)

— Only applied to obs that were identified as cloud free

Kaolinite is the dominant component of dust for entire year
— 66% best satisfied by Kaolinite+Gypsum

— 20% best satisfied by Kaolinite only

— Quartz was deemed to be relatively insignificant

Kaolinite fraction exhibits bi-modal distribution, with lower

fractions of kaolinite when the wind trajectories are from
the eastern octant

Infrared radiative forcing by the dust can be significant
Manuscript submitted to JGR

dturner@ssec.wisc.edu
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