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Science background

How we got to where we are today
Preliminary results

What's new

Challenges & a look to the future

The mission science and aspirations parallel those of ARM

ARM provides a critical anchoring of the information at fixed
sites, CloudSat and the A-Train then spreads this knowledge
globally.
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1. Science background
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It is energy that controls the gross global changes to
precipitation - changes to the column-wise radiative heating

grossly influence (ie control) of the global precipitation

response -
The uncertain effects of clouds on this heating is one potential

and significant cause for model spread in precip
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Cloud vertical structure and heating
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CLOUDS IN CLIMATE II

A WCRP Workshop on Modeling and Observations

Columbia, Maryland
October 19-23, 1987

‘Workshop Report
July 1988

BLCna Aarcne.tics and

Workshop identified profiles of diabatic
heating, water & ice contents as critical
Issues for climate modeling.

Subsequent workshops circa 1990s
appealed specifically for better ice info
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The effects of clouds on the vertical profile of —~ Sgie

radiative heating and on moisture

[ heating 1

- Treatment of falling ice grossly
+ Influenced the UT humidity of
the forecast model

)
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Numerous model studies -t |
point to the importance of this ol ot >
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IPCC Models: Global Average Total Cloud Ice
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M \ODELING IMPLICATIONS: IPCC GCMS A

Courtesy Duane Waliser & JPL colleagues

IPCC Models: Global Average Total Cloud Ice

Q 0.10
<E 0.09
S 0.08
g 0.07
c 0.06
= 0.05
O 0.04
3 0.03
o 0.02 -
5 0.01-
O 0.00 -

_ Factor of ~7 Difference

Cloud Ice water content - modelers last line of defense
against measured TOA fluxes (Tony Del Genio)
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The emergence of the CloudSat
science objectives



CloudSat Objectives S

Provide, from space, the first global survey of cloud
profiles (height, thickness) and cloud physical
properties (water, ice, precipitation) needed to
evaluate and improve the way clouds, moisture and
energy are represented in global models used for
weather forecasts and climate prediction.

A prevailing theme that emerged during this
time was an emphasis on the notion that
clouds and precipitation are part of a
continuum of connected processes. Much
understanding is thwarted through a general
artificial separation of cloud science and
precipitation science
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-~ How the mission evolved

A




Mm radars have become a key tool to

study clouds

ffeyvill

M.J. Post, Bob Banta, Lisa Oliver, Jaak Snider,
with lidar, radiometer and Ka-band radar on Porto Santo Island, Maderi. a Islands of Portugal,
ASTEX, 1992
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What emerged was a satellite concept
UTILITY AND FEAZ that largely outlined a combined
CLOUD PROFILI CloudSat and CALIPSO (with some of
WhFisTOF THE tewEs T the A-Train) mission elements and
1mesns cati @ISO What later became EarthCare.
& Jumc - | Jul
One of the great challenges at that
time was the paucity of information on
the (mm) reflectivity of clouds - what
we knew at that time was limited to a
few field experiment activities (e.g.
FIRE, ASTEX, ...)

Clearly the introduction of the MMCR
in ARM was seminal to this
understanding




Radar + lidar,
Spectrometer
+ sub-mm
radiometer +

Radar +

spectrometer

Early
concept

1995 - early mission
concept emerged,...

1996- ESSP was born,
missions under $90M
1998 - ESSP II- cap raised
to $120M. This forced the
separation of lidar/radar

The selection of both
CloudSat and PICASSO
(CALIPSO), opened the path
for a virtual radar/lidar
observing system



Two key components to the R
mission design

_1. Formation with the A-Train

L W2 2. The Cloud Profiling Radar (CPR)
- *Nadir pointing, 94 GHz radar

 3.3us pulse = 480m vertical res,
over- sampled at ~240m

e 1.4 km horizontal res.
e Sensitivity ~ -28 dBZ (-31 dB2)
e Dynamic Range: 80 dB

CloudSat is a pathfinder mission -
a step in a journey
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2+ years after initial proposed launch

April, 28th, 03.02am







A few highlights
May 20, 2006 - CPR switched to Operate Mode for
the first-time to check out science llection
functions and performance

«June 2, 2006 - CPR switched to operate mode and
CloudSat science data acquisition phase began

-une 6 2006 - Flrst CPR 10° clear ocean Calibration

* Nov 2006 release of selected data products
followed in Jan 2007 by full release

*Feb 2007 Senior review proposal for continued
operations

« March 2007 - first science papers




5
5

/‘
?

N

L

1. Formation with the A-Train
Goal - overlap ~50%
achieved - Overlap footprints ~90% time (anaIyS|S)
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This Is a remarkable technical achievement that has
clearly demonstrated the viability (for science) of
precision formation flying as a future EO strategy



12. The Cloud Profiling Radar (CPR) Coado
Requirement - BOL ~ -28dBZ

calibration < ~-2dBZ

Az~ 500m (480m subsampled at 240m)

July 30 2006 - CRS underflight of CPR - Preliminary Comparison - Snapshots
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Validation

vValldatlo C UEcC
‘done’ under two circumstances: =

.Death
Wall?"a%ay in frustration

Field expts

NAMMA, CCVEX,
C3VP, ...TC4,

Systematic obs,
ARM, ...




Early Results

Measure vertical structure of clouds, quantify their ice and water
contents as a step toward improved weather prediction and
understanding of climatic processes

What are the fundamental vertical structures of global clouds?
How do structure & properties differ in the presence of
precipitation?
What fraction of clouds of Earth precipitate?
What is the mass of ice suspended in the atmosphere?

*Quantify the relationship between cloud profiles and the radiative
heating by clouds

Do clouds heat or cool the atmosphere (relative to clear skies)?
Do the radiative properties of precipitation and non-precipitating
clouds differ?
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What are the fundamental vertical structures of S,
global clouds?

Cloud base differences from
. Other satellite products
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Mae et al, 007
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How do structure & properties differ in
the presence of precipitation?

Composite vertical profile for west pac, JJA

2T recipitating clouds.
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Frequency

Haynes and Stephens, 2007



Haynes & Stephens,

2007
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*Quantify the relationship between
cloud profiles and the radiative

heating by clouds

Do clouds heat or cool the
atmosphere (relative to clear

skies)?

Nef: July 2006

Height (km)
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Steps toward improving
representation of clouds related
processes in models ---- Model
evaluation



CloudSat simulator activity

' X CloudSat simulator (Quickbeam)

X Emulates observations (in the spirit of ISCCP simulator)

X Requires Cloud and Precipitation as input

X Has been integrated into certain versions of global models
X Being adapted to more ‘conventional’ low-resolution models.

X Sub-grid sampling

Primary Inputs Calculations

Primary Outputs

Profile of hydrometeor
mixing ratios

Full Mie calculations

Hydrometeor distribution -

type

Mie-lookup table

Hydrometeor phase and calculations

density information

Radar frequency +
Gaseous absorption
Radar location: space calculations
or ground Y )

Radar reflectivity
profile

Hydrometeor attenuation
profile

Gaseous attenuation
profile

Haynes et al., 2007
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Figure B: A comparisom of CloudSat data (middle panel) through a warm, mid-latitude
front (top panel, line from A to B) and the simulated CloudSat observations (bottom
panel) derlved from the UK Met Office model forecast using the CloudSat instrument
simulator. The madel forecast produces wide-scale light precipitation not observed
by CloudSat. The extent that this is a systematic problem in the forecast-model
physics is under investigation (courtesy, M. Ringer, UKIMO).
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CloudZat Radar Simulator
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The simulator in MMF, courtesy of Roj Marchand
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Cloud Ice water content (2B-CWC)

MLSv1.5c al 1.3.3 km

ECMWE a1 1.3.3 km

CloudSar ar 133 km I .+
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I Ooe

CloudSat

1 Tony DelGenio



40N/S Incident

Cloud & precipitation
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Whats new
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1. What's new: 2B-Geoprof-lidar

GEOFROF / LIDAR Comparisons
200628800352 1_0247 1_CS_2B—GEOPROF_GRANULE P_RD3_EDZ
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Polar cloud example



Radar Reflectivity/Brightness Temp

2. What's new: Tropical

storm data base s MM
More than 170 passes over named storms el L UL
For each storm overpass: S S T
*(A) Storm specific variables
olat, lon, mslp, max winds, SST’s T ey @)
*(B) Radial/Azimuthal Data Average Reflectivity
*Brightness Temperature (MODIS 11 um) T—————
*MODIS Cloud top height, pressure and o
temperature § o §
*AMSR-E SST, Wind Speed, LWP/IWP, o N
Precipitation °
*(C) Numerical Weather Prediction Analyses (Naval e e o
Operational Global Atmospheric Prediction System R
(NOGAPS™) i e e e
«Temperature and Moisture Profiles | Luoetal. 2007
Wind Vector Profiles ° g
«(D) CloudSat CPR Data Ll et '
.L2 GEOPROF Radar Reflectivity Profiles JIE |
L2 LWC/IWC Profiles B B ea]
L @ 4110 Ovorpuss

40 50 80 70 80
Best Track Maximum Sustained Wind (m/s)




3. What's new: A TRMM-CloudSat data base

IRS Cloud-Top Temperature (Aug 29, 2006)
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4. What's new: lidar/radar combined ice Coleado
microphysics Mace & Wang -

b
Lidar extinction
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3D example

from Zhien




5. What's new: Precipitation profiling product @\ma
(includes snow)

NEXRAD KCLX
Charleston, SC
09/07/2006
18:46:46 UTC

REFLECTIVITY
SCaN I 154615 NEXRAD and CPR Rainfall
9 i
Default
— M-P
Tropical
— CloudSat

10

Legend: {Category) dBZ ‘[
5=+ 75 l
&

Rainrate (mm h-1)

CPR Reflectivity (09/07/2006 — 18:43 UTC) oL
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Time (UTC) Naval Research Laboralor: 'y, MRY

Mitrescu et al
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6. What's new: Surface Clutter fixes Cejigrado
(reprocessing , July 2007) SELS,

X Receiver bandwidth 350 kHz
results in finite rise time, which
causes clutter in bins above
surface (rise time ~ 1/B)

X Actual performance (surface
return) matches pre-launch

tests
X These results indicate that 3 ] rr
bins above ocean surface are
contaminated; at least 2 were
expected from EM test data.
CPR ocea.||1[lsurm:e response at nadir [0.16%) - Shifted on Test Data Scale -
0k 40
& 5 #4 ~ -30dBZ — 1 I ”l L Qﬂnu l| o
S TR 290m-960m MNRAY N IIII. L P ! .J.Ill <
0 b e . ., P Fnr‘m
o @ % s % #3~-23dBZ (-26dBZ) | o #2 ~ +3dBZ
el 480m-720m $ 240m-480m
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7. Whats new: Matched CloudSat and

MODIS cloud products

x -
o, _ == ]
X R% -333m|nutes

et

100 200 300 400 500
column water (g/m2)

Stephens and Haynes, 2007
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The combination of
active and passive cloud
Information offers the
potential for deriving
‘new information’
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Challenges &outlooks a GUDSA '
Many chal_j_engegg.- e e e
Water contents of

a clouds,

review - proposal to
je CloudSat & A-train beyond

The next step of the journey
.. Stay tuned



CloudSat Data Processing Cejrade
Center (DPC)

[SX T T-V-Y 3 DATA PROCESSING CENTER

- About the DPC | Current Status | DataProducts | Science Team | Developer Area | ~ Help |
Sateliite Status CloudSat Flies Over Hurricane Daniel DPC News
Order Data } .
Latest Quicklook Images On 23 July 2006, the CloudSat orbit coincided with the position of ~ S8€ interesting CloudSat
- : Hurricane Daniel, whose winds were over 100 mph at the time. This OVErpasses on our new
Orhital Element Archive image represents a slice through the hurricane very close to the eye. Case Studies page!
Submit Reference The red purple areas indicate large amounts of cloud water. The blue .
areas along the top of the clouds indicate cloud ice. The wavy blue line Science Team members:
at the bottom indicates heavy precipitation likely exceeding 30 mmhr click here for account
{1.18 incheshr). For a comparison of this image to the MODIS satellite creation instructions.

image of the hurricane, click on the image.

Partners
Username: I

For more images like this one, see our new Case Studies page!
Password: I
Submit |

Create an account

Links

CLouusarlgl ” ll

CloudSat's radar was turned on at approximately 14:44 UTC on June
2nd. Data have heen collected since and are being evaluated during an
approximate two-month checkout period, after which time products will
be released to the CloudSat Science team and then to the general
science community. Check back for updates on the release schedule.

Z

Data not ],fet available. Click here to learn about the data products. Eurcpean Centre
for Medium-Rangs
Weather Forecasts

www.cloudsat.cira.colostate.edu
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Approximate Precip Rate (mm hr”')
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CloudSat FLXHR Algorithm — “E&°

X Inputs (blue):
X LWC/IWC profiles from CloudSat
level-2B algorithms

X Gas extinction profiles from ECMWF

Reflectivity analyses |
X Surface albedo, solar zenith angle,
etc. from ancillary datasets
Cloud Mask

X Procedure:

X Composite geophysical parameter®\RM|, \Wood
Cloud Type X Run broadband RT model (BUG )al.| 2007
X Compute heating rate profiles

Initial Water Content _ _ _
X Qutput consists of vertical profile¢ of

upwelling and downwelling LW an
SW fluxes at CPR resolution.

Optical Depth 2 Profiles of radiative heating.

Constrained Water Content

Fluxes/Heating Rate
\‘CERES/ssf (‘validation’)



2006 Dec 31 (365) 05:05:

2006 Dec 31 (365) 05:05:05 UTC | 1A-AUX | Granule 3595 15 Time 05:52:56 05:49:44 | Lat 6.1 -17.6 | Lon 118.6 121.1 CIRA CloudSat DPC
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=l study example
of comparison
between CloudSat and
AMSRE -

passive microwave
methods are missing
significant fractions of
light precipitation
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