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Overview of talk

Brief background to the RADAGAST project
ARM Mobile Facility and deployment in Niamey

Selected results

— Overview of measurements through the dry and monsoon
seasons in 2006

— Aerosols, including the major dust storm in March 2006
— Other selected results from posters

Summary, conclusions, etc



The RADAGAST project

- Radiative Atmospheric Divergence using ARM Mobile Facility,
GERB data and AMMA stations
— led by Tony Slingo, ESSC, Reading University, UK

« Links the ARM Mobile Facility with GERB (Geostationary
Earth Radiation Budget instrument on Meteosat) & AMMA

« The objective is to derive the divergence of radiation across

the atmosphere:

— by combining the AMF measurements of the surface radiative fluxes
and vertical structure of the atmosphere with GERB data from the top
of the atmosphere and AMMA observations

— study the radiative properties of aerosols (desert dust, biomass), water
vapour and clouds

— provide comprehensive observations for testing radiation codes
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Figure 5. The AMF ancillary site at Banazambou. Niger. Africa. Broadband downwelling
radiation 1s measured on the platform on the left-hand side of the picture and broadband
downwelling on the lateral beam attached to the pole on the right-hand side of the picture.
Standard meteorological variables are measured atop the pole on the right-hand side of the
picture and the solar panel that provides power is the tilted silver plate in the center.



SEVIRI and GERB on Meteosat

« SEVIRI is the operational imager
— 12 narrow spectral channels
— covering solar (4 vis/NIR) and thermal (8 IR) regions

— sub-satellite resolution ~1km / ~3km

 GERB measures the broadband radiation budget
— shortwave and total: 0.32-4um and 0.32-30um
— subtraction results in longwave: 4-30um

— sub-satellite resolution is ~45km, but there is also an High
Resolution (HR) product (~10km) using SEVIRI

« Both instruments have ~15 minute temporal resolution

— Meteosat-8 is the operational satellite, launched August 2002

— Meteosat-9 launched December 2005 is currently backup
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Niamey daily rainfall
April — October 2006

Niamey monthly rainfall

April — October 2006 and
1941-2000 long-term mean

From: Lamb and Lélé
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GERB and AMF fluxes will be combined to calculate atmospheric divergence
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GERB and AMF fluxes will be combined to calculate atmospheric divergence



The principal aim of RADAGAST is to characterize the radiative flux divergence across the
atmosphere. At the top of atmosphere the data are provided by the GERB instrument on
Meteosat 8, with a footprint at the surface of ~40km. At the surface, the fluxes are measured
continuously at a point by the AMF instruments.

The land surface can be very
heterogeneous at the scale of a
GERB footprint (~50km). How
well do fluxes measured at a
point represent the spatial
average across the GERB
footprint? How well does a time
average at a fixed point represent
the same time average over the
larger area?

F Ohomrue the fom of

SRR S
T %

RADAGAST: basic methodology

To address these questions we are using flux measuremenis from AMF radiation instruments

deployed at the main site at Niamey airport (NIA) and at a rural site S0km further East at
Banizoumbou (BAN).



The high resolution SEVIRI imager radiances provide
detailed information on the atmospheric and surface
inhomogeneities within the larger GERB pixels

Average clear-sky radiances for November 2006

Visible radiances (0.6 ym) Window radiances (10.8 ym) at 1200 UT
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much smaller area and is associated with lower albedo compared to the
GERB pixel: the ratio of radiances in the GERB pixel to those from the
HR pixel is 1.09. The corresponding ratio of the fluxes is 1.10 £ 0.02



Observations of the impact of a
major Saharan dust storm on the
atmospheric radiation balance

A. Slingo!, T.P. Ackerman?, R.P. Allan?, E.I. Kassianov?,
S.A. Mcfarlane?, G.J. Robinson', J.C. Barnard?, M.A.
Miller3, J.E. Harries?, J.E. Russell* & S. Dewitte?

Environmental Systems Science Centre, University of Reading, UK.
2Pacific Northwest National Laboratory, Richland, Washington, USA
3Brookhaven National Laboratory, Atmospheric Science Division,
Upton, New York, USA
“Blackett Laboratory, Imperial College London, London, UK
SRoyal Meteorological Institute of Belgium, Brussels, Belgium

Geophys. Res. Lett., 2006, 33, L24817, doi: 10.1029/2006GL027869



In these false-colour images, the dust appears pink or
magenta, water vapour dark blue, thick high-level

clouds red-brown, thin high-level clouds almost black
and surface features pale blue or purple.

1200GMT, 6 March 2006

On 6 March,
unusually
strong northerly
winds bring
cold air at low
levels over the
desert, creating
a broad front of
dust as the air
moves south.

The location of
Niamey is
marked by a
Cross.



In these false-colour images, the dust appears pink or
magenta, water vapour dark blue, thick high-level

clouds red-brown, thin high-level clouds almost black
and surface features pale blue or purple.

i

1200GMT, 7 March 2006

The shallow
layer of cold air
cannot rise over
the mountains
of the central
Sahara (light
blue in colour),
so it is forced to
follow the
valleys. Streaks
appear where it
accelerates
through gaps in
the topography.

The dust
reached
Niamey at 0930
on 7 March.



In these false-colour images, the dust appears pink or
magenta, water vapour dark blue, thick high-level
clouds red-brown, thin high-level clouds almost black

and surface features pale blue or purple.

£y r

By 8 March, dust
covers the whole
of West Africa
and is moving
out over the
Atlantic.

1200GMT, 8 March 2006

Animation available: http://radagast.nerc-essc.ac.uk




. = Dust product (upper) and
o | GERB OLR (lower) for
6o . 1200UT on 8 March 2006

10N -

oW




w

Aerosol Optical Depth

March 7 March 8 March 9 March 10 March 12
Reff=3.3 u |l Reff=1.6p [} Reff— 1 eu ! Reff— 1 3u I Reff— 1.2u
w%
5& I% i
w EEE
Vlwf
N AL wrﬁ N 1L i
Moo
— 7 —rrﬁa = —H F —
sy || ¥
15 0415,
_ © 0500 |4k
L 3
5 v 0673
].J,.
| |
| ! | ' | ! | | ! | | ! | ! | ! |
12 15 12 15 12 15 12 15 12 15

Local Time, hour



"“E 400
= 300
¢ 200
3
o 100
S 0
|_
1000
800
£
Z 600
[7y]
(0]
>
=
L 400
Q
L
w
200
0
'c 400
Z 300
7p]
© 200
3
i 100
=
'_
<C

g—m/ﬁ/\a\&\-ﬁo
E w——=x Observations -
- a Model (SHDOM)
O Model (SBDART)

3 4 5 6 7 8 9 10 11 12

I T T T 1 I T T T [

o

| — Total
- —— Direct
| — Diffuse -
3 4 5 6 7 8 9 10 11 12
] g_ﬂ‘mc
3 4 5 6 7 8 9 10 11 12

Date in March 2006




EEAO41 M5G dust RGB 08 Mar 2007 1030 UTC

EEAC41 MSG dust RGB 03 Mor 2007 1030 UTC




Evaluation of the Met Office NWP model
over West Africa during the dry season

Sean Milton, Glenn Greed & Malcolm Brooks
Met Office, Exeter, UK

The global NWP model currently has a background aerosol
climatology, but regional models (not shown) include the aerosol
transport scheme developed in the climate model

~ =

e



Mean Error in Downward SW surface radiation
VS. AERONET AOT 440nm Banlzoumbou
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UM vs ARM — Surface Energy Balance. Mid Dec — mid Apr
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Data from the AMF and Meteosat-8
21 September 2006
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Comparisons with the
Edwards/Slingo radiation code

* One of the main RADAGAST objectives is to provide comprehensive
observations for testing radiation codes

« We have compared longwave simulations by the Edwards and Slingo
(1996) radiation code with observed fluxes from the AMF broad-band
radiometers and (in radiance mode) with AERI radiances, for cloud-free
conditions

* Unlike the NWP comparisons shown earlier, these are stand-alone
tests, running the code with input from the observed thermodynamic
profiles

 This has produced some very interesting differences

* The work has benefitted from collaboration with Eli Mlawer (AER),
who carried out parallel calculations with LBLRTM



(AMF)—(ES) flux/Wm—2

Comparisons with Edwards/Slingo radiation code

The code was run for the whole of 2006; the main profile information is from sondes
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Comparisons with Edwards/Slingo radiation code
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The large reduction in column water vapour in October controls the
downward longwave fluxes, as shown earlier, but not the differences.

Could aerosol be causing the flux differences during the dry season?



Every peak in the
Banizoumbou AOT
time-series after
September has a
corresponding peak in
the downward thermal
flux difference.

However, that doesn’t
necessarily mean that
the cause of the
differences is aerosol;
it could still be thin
and/or high cloud that
becomes relatively
more important
because of the dry
atmosphere (and
which also fools the
aerosol retrieval).
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SEVIRI 10.8—-12.0 micron radiances and AERI spectra
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Characterization of Dust Type and
Properties at Niamey, Niger
Using Downwelling Infrared Radiance Data

Sarah Bedka and Dave Turner

Space Science and Engineering Center
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ARM® .. Dust Optical Depth and
Composmon Distribution
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Radiative Forcing of Saharan
Dust Aerosol at Niamey, Niger

S. McFarlane, E. Kassianov, C.

Flynn, D. Turner, T. Ackerman
With contributions from J. Mather and J. Barnard



Aerosol properties at Niamey

Retrievals of column visible AOD, g, w from MFRSR (Kassianov et al.)
Retrievals of infrared AOD, r, from AERI, assuming kaolinite (Bedka & Turner)
Vertical profile of extinction from MPL

Interpolate aerosol properties over missing/cloudy periods

Caveats:

— Aircraft flights during DABEX show frequent cases of biomass burning aerosol
overlying dust; we assume column values

— Currently not requiring consistency between AERI/MFRSR views of aerosol
— Issues with MPL calibration and possible temperature-dependent diurnal cycle
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Calculated daily average SW and LW
radiative effects at surface due to aerosol only
(Jan-Apr 2006)
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Daily average effect of aerosol on surface fluxes during dry
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DABEX aircraft measurements

The Dust and Biomass Experiment
(DABEX) was part of the African
Monsoon Multidisciplinary Analyses N
(AMMA) SOP-0 (Special Observing g RN R
Period) that took place during F i
January-February 2006 within sub- CESSsE
Sahelian West Africa.

The UK BAe-146 atmospheric
research aircraft at Niamey

biomass burning aerosol

Flying in a ‘clear slot’ between the low-level dust and

the elevated biomass burning haze over Niger (flight
B161)

Mineral dust




From: Jim Haywood, Ben Johnson
and Simon Osborne (Met Office)

A common feature through DABEX
was the presence of an aged
biomass burning layer overriding a
low-level mineral dust layer. The
aged biomass burning layer
constituted a regional haze that was
a constant presence in DABEX.

The strengths of these layers (i.e.
their contribution to the optical
depth) varied from day to day as is
shown on the right. CO and O, are
strongly correlated with scattering in
the biomass burning layer, but O,
shows depletion in the dust layer
possibly due to uptake on the
particles.
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Flight B159 (19 January 2006)

(a) total scattering coefficients and (b) ozone
(multiplied by 3 for scale purposes) and carbon
monoxide concentrations.
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Flight B160 (21 January 2006)

(a) total scattering coefficients and (b) ozone
(multiplied by 3 for scale purposes) and carbon
monoxide concentrations.



Aerosol optical properties observed during DABEX (Niamey, January 2006),

compared with SHADE and SAFARI

Data source | Observed | Mie- Mie- Mie-

& aerosol single calculated calculated | calculated

type scattering | single extinction: assymetry
albedo: w | scattering Kext (M? g') | parameter: g

DABEX 0.73-0.90 0.83 5.0 0.59
generic aged
biomass
aerosol
SAFARI 0.89-0.93 0.91 50 0.59
A790 aged
biomass

aerosol




What is the possible wider relevance
of these measurements?

* 2005 was the most active hurricane season in recent history

— total storms 28 (record), hurricanes 15 (record), major hurricanes
(cat 3+) 7, of which 5 made landfall in the USA, including of course
Katrina

« 2006 in contrast was a weak hurricane season
— total storms 10, hurricanes 5, major hurricanes (cat 3+) 2
— no significant tropical storms made landfall in the USA

« WHY?



HOW Nature FOllCd the 2006 Eos, Vol. 88, No. 9, 27 February 2007
Hurricane Forecasts By W. K. M. LAU AND K.-M. KIM
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Fig 2. Maps show difference between JAS 2006 and 2005 (2006 minus 2005) of (a) SST (°C), (b)
OMI/AI (units are nondimensional), (¢) TMI rainfall (millimeters per hour), and (d) Visible Infra-
red Scanner cloud top temperature (T,, °C).



Summary and future work

Over a year of data from the AMF, GERB and SEVIRI
— several articles and press releases: http://www.arm.gov
— major dust storm in March 2006 (Slingo et al., Geophysical Research

Letters, 30 December 2006)

— overview paper by Miller and Slingo in Bulletin of the American

Meteorological Society (scheduled for August 2007)

Aerosol has a large influence on solar fluxes (expected) and appears to
have a significant influence on thermal fluxes (unexpected)

Ongoing work includes:

analysis of AMF and GERB fluxes throughout 2006, for clear and
cloudy conditions, and comparisons with radiation and NWP models

developing the methodology to derive area-average surface fluxes,
including exploiting the data from the second site at Banizoumbou

combining AMF and GERB data to derive atmospheric divergence
Radagast website; hitp://radagast.nerc-essc.ac.uk




