ARM LES Testbed Prototype: Multi-Scale WRF Simulations of Boundary Layer Clouds

Ping Zhu Florida International University

Pavlos Kollias Brookhaven National Laboratory

> Bruce Albrecht University of Miami

What is ARM-LES-Testbed ?

It is structured to provide a framework for effectively organizing and using the extensive data generated by the ARM radars and other ARM observing systems for boundary layer cloud studies and for evaluating high resolution simulations.

Parameterization Development and Testing Strategy

ARM Hi-Res and 3-D Observations (e.g. MMCR and WACR)

In-cloud turbulence, large-eddy circulations, and high resolution cloud structures.
Possibility of combining the liquid water estimates with the vertical velocities to obtain liquid water fluxes.
ARM Radar simulator.

Classic LES framework

Idealized initial conditionsHomogeneous large-scale forcings

(e.g., BOMEX, ATEX, DYCOM, ARM-SGP)

A New LES Framework:

A multiple two-way nested model to explicitly simulate a spectrum of scales from synoptic scale flow, mesoscale organizations, down to fine scale turbulent eddies in a unified system.

WRF-LES

Nested within WRF mesoscale simulations to ensure robust upscale and down-scale interactions across a spectrum of scales.
Potential to be executed at regular bases in parallel with MMCR and WACR observations.

>Initialized with forecast or reanalyses data. Initialization can be improved through assimilating ARM observations.

Generating forcing data to drive various existing LES models in the community.

Stratocumulus case, March 25, 2005

>NCEP Global Tropospheric Analyses (1 X 1). **>**NCEP reanalysis and ARM sounding

NASA

10

10⁻¹

 10^{-2}

Frequency, f(Hz)

10-3

10-4

 10^{-3}

WRF-LES: > Simulating the cloud cases that are strongly affected by the interaction across scales. > Providing forcing data to drive various LES models and 3-D dataset for analyses.

Data assimilation of ARM observations.

Data can be assimilated: 1. sounding data 2. surface observations 3. radar radial velocities 4. radar reflectivity Improvement of 3DVAR 1. wind profile data assimilation. 2. precipitation assimilation.

Conclusion:

WRF-LES could be served as an appropriate modeling platform to fulfill the primary goal of ARM-LES-Testbed.

Model physics

- Microphysics: Thompson et al. (2004) graupel scheme.
- Radiation: RRTM (Rapid Radiative Transfer Model) longwave scheme, Dudhia shortwave scheme.
- Boundary layer: Mellor-Yamada-Janjic TKE scheme, Monin-Obukhov scheme.
- Cumulus: Kain-Fritsch scheme (domains 1 and 2).
- Soil model: Noah land-surface model, thermal diffusion scheme for temp only.