Magnitude of the Shortwave Aerosol Indirect Effect in Springtime Arctic Liquid-Water Clouds

Dan Lubin

Scripps Institution of Oceanography

Andrew Vogelmann

Brookhaven National Laboratory

28 March 2007 ARM Science Team Meeting Monterey, CA

Why the Arctic?

- 1. The great "bellwether" for global climate warming
- 2. Well known potential impacts on global ocean circulation

Why the Arctic?

3. Unique modes of human habitation

- Indigenous populations at least 15,000 years old, possibly 30,000 in Siberia.
- Fragile big game hunter societies closely dependent on environment.
- Inuit and other societies already strained by social & economic contact with the modern world.

Motivation

- Liquid water cloud is the most prevalent meteorological condition in the high Arctic (e.g., Shupe and Intrieri, 2004).
- Previous work with ARM NSA data
 - Revealed a longwave manifestation of the aerosol first indirect (Lubin and Vogelmann, 2006; Garrett and Zhao, 2006)
 - Springtime liquid water clouds
 - Surface warming comparable to that of trace gas forcing
- What is the corresponding shortwave (SW) manifestation of the indirect effect?

LW Indirect Effect from AERI

Similar clouds - but low versus high aerosol - shows consistency with theory

Lubin and Vogelmann, Nature (2006)

LW Indirect Effect: AERI Detection

- Slopes dT_b/dv for six years of AERI data (1998-2003)
- Single layer clouds detected by ARSCL, base and thickness < 1000 m
- Low CN: < 50 cm⁻³, High CN: > 175 cm⁻³

LW Indirect Effect

Consistent difference of 8.2 W m⁻²

LW Indirect Effect: Attribution

Retrieve r_e and LWP from mid-IR window slope & intercept

- Sorting on LWP, we find that of the 8.2 W m⁻²:
 - An ave. of 3.4 W m⁻² is readily attributable to the 1st indirect effect
 - The rest cannot be conclusively explained by existing ARM data.

This effect exists only for optically thin cloud ($\tau < \sim 8-10$)

How Does this LW 1st Indirect Effect Compare with Other Arctic Aerosol-Radiative Effects?

Approaches

1. Shortwave Direct Effect (Observation)

• Determine SW direct aerosol forcing from ARM MFRSR and pyranometer data

2. Shortwave Indirect Effect (Modeling)

• Estimate from radiative transfer simulations Lubin and Vogelmann, *GRL* (2007, in review)

3. Shortwave Indirect Effect (Observation)

- Determine SW indirect effect from pyranometer data, analogous to Lubin and Vogelmann (2006)
 - Work nearly done, will have some useful results in ~ 1 month
 - Finishing up "forensic" work with multiyear pyranometer data set

Shortwave Direct Effect

Obtained from ARM NSA Observations

- Pyranometer, MFRSR
- Tower radiometers
- MWR, Sondes
- Method similar to Conant (2000)

1. Cloud screening tests direct and diffuse fluxes for piece-wise linearity with $cos(\theta_0)$.

 Aerosol-free downwelling fluxes are modeled using MWR water vapor, spectral surface albedos for snow and vegetation Aerosol forcing is the observed clear-sky fluxes minus the modeled aerosol-free fluxes.

• The 'observed' aerosol forcing estimates constrain a fit over the diurnal cycle to get the diurnally averaged aerosol forcing.

Shortwave Direct Effect

Top Panel:

 Broadband surface albedo deduced from the tower and upward looking radiometers.

 Diurnally averaged AOD which is obtained from the MFRSR and averaged for only the 'good' points.

• The two large values are consistent with aerosol:

Angstroms are large, hence small particles, not likely to be a cloud.

CMDL observations of CN among the largest for those points.

Lower Panel: Forcing versus Time

 All forcings reported are diurnally averaged and for a 100% clear sky.

• The 'downwelling' points are the aerosol effect on the downwelling flux incident at the surface.

• The 'surface' fluxes are the net surface aerosol forcing, given by the downwelling fluxes times the surface co-albedo.

Shortwave Indirect Effect Simulation

Approach

- Estimate using diurnally averaged calcs for Surface and TOA
- "Low" and "high" aerosol effects/amounts
- Difference yields an estimate of the shortwave indirect effect

Radiative Transfer Model

179-band, Discrete-Ordinates (Stamnes et al., 1988; Lubin et al., 2006)

Surface Albedo from SHEBA

- Perovich et al. (2000)
 - Snow covered ice March-May
 - Bare sea ice June (onset of melt season)

Aerosol loading (Optical depth at 500 nm)

- Background $\tau_a = 0.1$
- Polluted $\tau_a = 0.5$

Cloud effective droplet radii

Estimated based on Lubin and Vogelmann (2006), Garrett and Zhao(2006)

- 11 μ m Clean air, background aerosol
- 8 μm Arctic haze condition; high aerosol

North Indirect Effect: Surface Forcing

March through May

- Flux difference increases
- Increasing solar elevation and day length

June

- Differences <u>enhanced</u>
- Onset of sea ice melt
 - ➔ Lower surface albedo
 - → Fewer multiple reflections

Indirect Effect: TOA Forcing

- TOA effect is ~1/2 of the Surface (opposite sign)
- Difficult to detect from space during early spring (snow surface)

Monthly Cloud-Liquid Water Paths

- **Five years of NSA data**
- MWR
- ARSCL identifies low, single-layer clouds

Simulated Flux Differences

- LWP from MWR distributions
- High minus Low Aerosol (R_{eff} , τ_a)
- Cloudy skies are overcast

		March	า	April		May		June		
-		clear	cloudy	clear	cloudy	clear	cloudy	clear	cloudy	
Surface	85 N 4			-21.2	-7.2	-29.5	-15.2	-33.9	-29.4	
	80 N	-3.7	-0.7	-17.4	-7.4	-26.5	-14.9	-32.2	-29.4	
	75 N	-7.5	-2.0	-16.4	-8.6	-19.9	-14.1	-28.9	-29.3	
	71.3 N	-10.0	-3.2	-14.3	-9.1	-16.2	-14.0	-24.7	-29.2	
ΤΟΑ	85 N			4.8	1.7	4.6	3.4	14.3	13.8	
	80 N	1.0	0.2	3.3	1.7	4.3	3.4	2x 13.7	13.7	
	75 N	1.7	0.5	2.9	1.9	3.0	3.2	12.4	13.7	/
_	71.3 N	2.1	0.8	2.2	2.0	2.2	3.2	10.5	13.6	

Conclusions

Aerosol Direct Effects

- LW direct: Barely detectable in the Arctic.
- SW direct: Measured Small in spring, larger in summer

Aerosol Indirect Effects

- LW Indirect Effect: Measured with AERI data
 - In all liquid-water cloud data for high vs. low CN
 - Consistent 8.2 W m⁻² difference
 - 3.4 W m⁻² is identifiable with first indirect effect
 - Applies only to optically thin cloud ($\tau < \sim 8-10$)
- SW Indirect Effect:
 - Theoretically comparable to LW effect Mar-Apr, larger May-Jun
 - Possibly difficult to detect at TOA
 - More detailed empirical analysis underway with ARM NSA data

