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Effect of moist convection on cloud feedback 
depends on convection strengthdepends on convection strength
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(Zipser 1977)(Zipser, 1977)

“thermostat” → detrainment control      “adaptive iris” → precipitation control



Almost all lightning 
occurs over land – a 
proxy for convection 
strength … but why is 
convection stronger
over land?over land? 
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Zi d L (1994)Zipser and Lutz (1994)



CAPE (vertically integrated 
buoyancy) similar in sampled y y) p
maritime and continental 
soundings, so…

1. “Shape of the CAPE”: Rising 
parcels more buoyant, but over 
smaller depth over land than

ocean

smaller depth, over land  than 
ocean

2. Different boundary layer depth 
land

y y p
and cloud base height over land 
and ocean: Bigger land bubbles, 
less entrainment dilution

3. Aerosol effects on 
autoconversion and ice phase 
i iti ti S ll d l t l ft d (Lucas et al. 1994)initiation: Smaller droplets lofted 
more easily into ice phase region

( )



A problem for GCMs, because

• Most cumulus parameterizations don’t 
calculate updraft speed, only mass fluxcalculate updraft speed, only mass flux 
(proportional to updraft speed x area)

• GCMs don’t account for different sizes of 
buoyant parcels rising from boundary layer

• Few GCMs include aerosol effects on both 
convection and the ice phase

What did TWP-ICE have to say about this?
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moist
adiabatic

dry
adiabatic

Active ~ maritime break ~ continental
Arakawa (1993)

Active ~ maritime, break ~ continental 
… to some extent



2
3Parcel buoyancies greater at all sites

during break period

Cape Don
15.5

Ship
15.5

Garden Point
15.5

1
5SCM forcing datatset buoyancies exceed

those from all sounding locations…
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Diagnosis of growth of cumulus updraft 
d f th d i t t ispeed from thermodynamic structure in 

SCM (Gregory 2001)

buoyancy
due to 
parcel

drag
due to
condensed

downward
cumulus
pressure
gradient

dilution
by
entrainmentparcel

T, q excess
condensed
water
loading

gradient
force

e t a e t

Combined with Marshall-Palmer DSD and empirical size-fallspeedp p
relations for liquid/graupel/ice, allows for interactive estimates of 
convective precipitation efficiency and effect on anvil cloud 



SCM d i l tSCM does simulate a
difference in mean updraft
speed during deep 
convective eventsconvective events …

But speeds are probably too
large during active periodlarge during active period

SCM forcing?  Soundings,
surface fluxes?

Boundary layer mixing?

Updraft parameterization?



Active-break difference in individual events not so obvious except
for Feb 11 case response to PBL moisture error buildupfor Feb. 11 case, response to PBL moisture error buildup

Timing of events good when dynamical forcing is strong, not so
good when surface-flux drivengood when surface-flux driven

Lots of stratiform anvil rainfall … in fact, too much (> 50% at times)



SCM

Monsoon case no lightningMonsoon case – no lightning

Break case - lightning
SCM d t i i t il

g g

(courtesy of Peter May)
SCM detrains more into anvil
during stronger break convection



Summary

• Updraft speed differences may be due to 
differences in CAPE/buoyancy after all (atdifferences in CAPE/buoyancy after all (at 
least in some places)

• SCM capable of qualitatively simulating 
active-break differences in convection 

t th b t b iti t istrength, but may be sensitive to errors in 
forcing or deficiencies in PBL

• Looking to interact with others interested in 
the convective regime problem (observers, g p ( ,
CRMers, other SCMers) 


