Separating Real Aerosol Effects from Artifacts Using Space-borne, Air-borne and Ground Measurements and Understanding Physical Processes Using a CRM

> Zhanqing Li University of Maryland

Contributors T. Yuan, M.-J. Jeong, R. Zhang and J. Fan

• Evaluate various effects on remote sensing products from satellite and ground sensors.

- Separate artifacts from the real effects.
- Eventually, generate "clean" products for studying aerosol direct and indirect effect.

• Presented are some preliminary findings toward these goals.

Candidate Factors Causing the Apparent Correlation between the AOT and Cloud Parameters

Real Effects

- Aerosol humidification effect
- Convergence of aerosols
- Aerosol production (Cloud-processed particles/New particle genesis) associated with cloud

<u>Artifacts</u>

- Cloud contamination
- Erroneous cloud cover estimation associated with aerosol
- Enhanced diffuse radiation due to clouds

Methods

- Analyses of satellite data to examine the issues in perspective: scene-by-scene selection, automated ensemble analysis
- Analysis of in-situ/ground data to evaluate various effects
- Use of cloud resolving model to understand the physical processes

Cumulus clouds and aerosols: the most challenging problem, but essential for AIE studies

Global analysis

Region	Latitude range	Longitude range	Dominant Aerosol/Cloud Types	Period	AIE efficiency	Sample size
North Atlantic	10-20N	20-40 W	Dust, Stratocumulus	June-August, 2002	Negative	99,978
South Atlantic	5-208	5E-20W	Smoke, Stratocumulus	June-August,2002	Negative	100,377
Southern Pacific	5-258	75-105W	Sea salt, sulfate and pollution, Stratocumulus	August-October,2002	Negative	74,216
Indian Ocean	12-20N	60-70E	Dust with pollution, Trade cumulus	June-August, 2002	Negative	94,023
India	13-24N	70-85E	Mixture of sulfate, dust, sea salt and smoke, cumulus	June-August,2002	Neutral	53,888
Amazonia	8S-12N	44-76W	Mainly smoke	August-October, 2002	Negative	672,421
Southeastern China	23-43N	100-120E	Mixture, cumulus	June-August,2002	Positive	179,533

Student-t test indicates except India the difference among different loading of aerosols are statistically significant at least at the 95% level

DER-AOD relationship

AIE efficiency determining factor

Analysis of possible third factors

- Partially cloudy pixels
- Aerosol hygroscopic growth
- Cloud 3-D effect
- Cloud dynamics effect
- Surface effect

Filtering out optically thin clouds largely alleviates all possible artifacts

The Effect of Cloud Fraction

TSI Cloud cover was acquired for circumsolar areas with increasing angular distance from the sun (w/ 10-deg. increment). Then, it was examined if there is any correlation between the AOT and cloud cover.

O: clear sky; 1: thin cloud; 2: opaque cloud; 3: location of the sun

AERONET AOT v.s. Cloud Cover for Various Circum-Solar Areas

← Nephelometer for the In-Situ Aerosol Profiling (IAP) flights

Size cut-off for IAP/Neph \rightarrow 1um

A flow schematic for the IAP

IAP AOT v.s. TSI Cloud Cover

Column Aerosol Humidification Factor at the SGP Site (Apr. 2003-Jun. 2004)

A Modeling Study

- NASA GSFC Cloud Ensemble (GCE) cloud resolving model
- Modified Kohler's theory by Fan et al. (2007)
- Detailed bin-microphysics
- The model is able to calculate the CCN activation spectrum and the subsequent growth of cloud droplets that are resolved in 33 size bins [*Fan et al.*, 2007].

Modeling results

Note that these results can only be simulated if the air mass is moisture enough

Take home messages

- Care must be exercised in using satellite data to study AIE
- Real effects and artifacts may be separated by combined use of satellite, in-situ and ground observations.
- For fair-weather Cu AIE efficiency may be either positive or negative based on the satellite analysis
- Different environmental factors like aerosol type and air humidity may affect AIE
- A lot more in-depth studies are required to further sort of various issues