Activities of the ARM Cloud Modeling Working Group

Stephen A. Klein Lawrence Livermore National Laboratory

CMWG Steering Committee: Larry Berg, Chris Bretherton, Anthony Del Genio, Ann Fridlind, Christian Jakob, and Minghua Zhang

17th ARM Science Team Meeting, Monterey, California, March 27, 2007

Outline

New Analysis Datasets
Selected M-PACE Results
Statistical Assessment of Models with ARM data
Three Items

Future work

New Analysis Datasets

M-PACE (S. Xie et al.)

TWP-ICE (S. Xie, T. Hume et al.)

Extensions to Analysis Techniques (M. Zhang) Balanced Water Budget

Selected M-PACE Results

M-PACE Model Intercomparison

Period A

Liquid Water Path

 CRMs are not superior to SCMs
 Aerosol-Cloud Microphysics (first) and turbulent transport (second) are more important

Single moment, T-part. Single m., non-T-part. Double moment Bin resolved

Sensitivity to Aerosol-Cloud Microphysics for Arctic Clouds

UCLA LaRC Cloud Resolving Model (Y. Luo et al.)

One Moment (Modified Lin et al. *1983*)

Two Moment (Morrison et al. 2005)

Sensitivity to Aerosol-Cloud Microphysics for Arctic Clouds

X. Liu et al. insert a double moment microphysics parameterization for cloud ice into the NCAR CAM climate model

This replaces the single moment temperature partitioning of cloud condensate

This has been tested in SCM and CAPT integrations of the NCAR CAM

Statistical Assessment of Models with ARM Data

Manus Condensate: ARM vs. MMF and CAM

SGP Diurnal Cycle of Cloudiness: ARM vs. Large-scale Models

Three Items...

Climate sensitivity with MMF (M. Wyant et al.)

 A 'Cess' perturbation experiment was performed whereby the sea-surface temperature was raised 2K

 Water vapor feedback confirmed

MMF

64 CRM columns x 4 km = 256 km

GCM grid column 2.8° ~ 300 km

Improving MMF shallow clouds (A. Cheng et al.) *ARM Shallow Cumulus*

ARM Fellows (F. Yang – NCEP)

- Direct beam albedo was underestimated in comparison to ARM data
- Found that the normalized direct albedo could be parameterized as a function of the

solar zenith angle (SZA) and was independent of the surface type

Parameterization is currently being incorporated into the GFS model

Future Work

'Simulators'

Q. J. R. Meteorol. Soc. (2006), 132, pp. 1325-1347

doi: 10.1256/qj.05.24

Experimental 2D-Var assimilation of ARM cloud and precipitation observations

By PHILIPPE LOPEZ*, ANGELA BENEDETTI, PETER BAUER. MARTA JANISKOVÁ and MARTIN KÖHLER

European Centre for Medium-Range Weather Forecasts, Reading, UK

Microwave Brightness Temperature

Radar Reflectivity

OBS = ACRF observations, BG = background or first guess, ANA = analysis or model after data assimilation

Radar Reflectivity: ARM/CloudSat vs. MMF (R. Marchand et al.)

Future Work

... Tropical convection...

The End

Extra Slides

CloudSat Simulator (A. Bodas-Salcedo, J. Haynes et al.)

CloudSat Radar Reflectivity (dBZ)

Distance (km)

UK MetOffice NWP model through the lens of a simulator

SGP Cirrus Ice Water Path: ARM vs. Large-scale Models

M06 OBS

D. Hartsock et al. and the CAPT team

Volume 7

JOURNAL OF HYDROMETEOROLOGY

December 2006

Do Global Models Properly Represent the Feedback between Land and Atmosphere?

PAUL A. DIRMEYER

Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland

RANDAL D. KOSTER

Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Zhichang Guo

Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland

ACRF Observations

Climate and Weather Models

A scatter plot of the latent heat flux normalized by the net radiation to soil wetness normalized by its variability

Models vary widely and do not match observations well

Use of ACRF data in Cloud Resolving Modeling

Q. J. R. Meteorol. Soc. (2002), 128, pp. 1075-1093

Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land

By A. R. BROWN^{1*}, R. T. CEDERWALL², A. CHLOND³, P. G. DUYNKERKE⁴, J.-C. GOLAZ⁵, M. KHAIROUTDINOV⁵, D. C. LEWELLEN⁶, A. P. LOCK¹, M. K. MACVEAN¹, C.-H. MOENG⁷, R. A. J. NEGGERS⁸, A. P. SIEBESMA⁸ and B. STEVENS⁹ ¹Met Office, UK ²Lawrence Livermore National Laboratory, USA ³Max-Planck-Institut für Meteorologie, Germany ⁴Utrecht University, The Netherlands ⁵Colorado State University, USA ⁶West Virginia University, USA ⁷National Center for Atmospheric Research, USA ⁸Royal Netherlands Meteorological Institute, The Netherlands ⁹University of California Los Angeles, USA

Evolution of cloud fraction and cloud base height between sunrise (11 UTC) and sunset (02 UTC) from the observations at the ACRF Oklahoma site and 8 cloud models

The international organization GCSS conducts intercomparisons of cloud models using a case study approach

 This case study, involving mostly non-ACRF funded scientists, used ACRF data to evaluate the diurnal cycle of shallow
 ¹⁵ cumulus clouds

Comparison of one- and two-moment bulk microphysics parameterization: MPACE

Observations OneM, TwoM

ARM Shallow Cu Cloud Fraction /Liquid Water

Average from hours 6-9 (11am-2pmLT)

BOMEX Shallow Cu Cloud Fraction /Liquid Water

Average from hours 4-6

Low- and higher-order turbulence closures: ARM BL clouds simulated by CRM and LES

Low- and higher-order turbulence closures: BOMEX BL clouds simulated by CRM and LES

