CLOWD Breakout Meeting

1:30 to 3:00

Meeting Charges

Brainstrom CLOWD's "legacy"
 Establish task ownership

Breakout Primer

Focus Groups Are not intended to live forever

- Form on a pressing topic
- Do a few highly visible things
- Disband to make room for new Focus Groups

Why Invitation Only? Not a normal Breakout Session

- Navigate Breakout conflicts (1.5 hrs)
- Minimal Introduction (know the issues already)
- Small, dynamic group
 - Facitates discussion
 - Say the hard things (if needed)

Breakout Primer Summary of Current Activities

Field Studies – Maria Cadeddu (MWR IOP [SGP], GVR [NSA])

Programmatic Proposals

 COPS-CLOWD April deployment of 90/150

RACORO

RACORO Overview

Routine Aerial Vehicle Program (AVP) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations

Steering Committee

Andy Vogelmann, Greg McFarquhar, Dave Turner, Jennifer Comstock, Graham Feingold, Chuck Long and John Ogren

ARN Atmospheric Radiation Measurement Program

Overview

- Conduct long-term, routine flights in boundary layer, liquid-water clouds at SGP to measure
 - Microphysical properties
 - Optical properties and radiative fluxes, and
 - Associated aerosol properties & atmospheric state
- Long-term statistics needed because these clouds are thin and/or broken, which make retrievals highly uncertain
 - Help develop & evaluate ARM retrievals
 - Improve our understanding of how boundary layer clouds interact with aerosols & radiative fluxes

ARN Atmospheric Radiation Measurement Program

Relevancy to ACRF

- Climatology critical for cloud modeling & interpretation
 - -50% of liquid clouds have LWP < 100 g m⁻²
 - Retrieval algorithms differ by 50 to 100% for these clouds
- CLOWD has shown that their cloud radiative effects must be determined with greater accuracy
 - Small uncertainties in their optical properties can affect energy balance & their response to climate forcing
- Clouds with low liquid-water amounts are one of greatest uncertainties in climate models (these clouds are not even resolved in GCMs)
 - these data can help develop & evaluate their improvement in climate models.

Proposed Experiment

Atmospheric Radiation Measurement Program

- Fly pre-determined flight tracks over the SGP 2 to 3 times/week for 1 year
- Flight legs envisioned:
 - Focus on low LWP clouds, but sample whatever clouds present to get representative statistics
 - Straight, ~20 km long legs at multiple heights where clouds are present
 - Spirals over central facility
- Times may be planned with satellite overpasses
- Some nighttime flying
- Routine observations must use instrumentation with very high reliability and "easy" processing

Armospheric Radiation Measurement Program Instrument Suite

- Envision low-level, slow-flying aircraft observing:
 - Cloud microphysics (SDs, bulk LWC, βe)
 - Radiometric quantities (↑ and ↓ SW & LW radiometers, SW spectra to map surface albedo)
 - State parameters (fast response T, water concentration, & turbulence)
 - Aerosol properties (SD [D > 50 nm], CCN and CN)
 - Aircraft telemetry (speed, pitch, roll, video?)

Proposed Meeting Agenda

Step 1. Firm up "Base"

a. Support CLOWD Infrastructure Jennifer needs CLOWD-critical instruments and VAPs

b. RACORO

Ideas, concerns, add ons?

c. Impediments

"Scale Clash" (better than "Scale babble"?)

Step 2: "Go long" – <u>GROUP Efforts</u>

Some Possible Discussion Ideas...

PI Products

"Model" of what works Can't be too taxing for PI Must be "rewarded"
BBHRP vetting?

Direct link to modelingRACORO?