

Characterization of Dust Type and Properties at Niamey, Niger Using Downwelling Infrared Radiance Data

Sarah Bedka and Dave Turner

Space Science and Engineering Center University of Wisconsin - Madison

Aerosol working group breakout session Monday 26 March 2007 ARM Science Team Meeting Monterey, California

Background

- Airborne dust is common in the Sahel region of Africa
- How important is this dust to the radiative balance and atmospheric heating in that region?
 - AMF was deployed to Niamey, Niger to help answer this question
- Niamey experiences two distinct weather patterns due to the location of the ITCZ
 - Are the dust properties correlated with the ITCZ location, and if so, how?

- Downwelling IR radiance is sensitive to dust composition, optical depth, and effective radius
 - To detect differences in composition, each mineral must absorb in different spectral regions
 - Able to distinguish between quartz, kaolinite, and gypsum using IR data
- Performed 6 sets of retrievals on manually identified cloud-free periods
 - Quartz-only, kaolinite-only, gypsum-only
 - Quartz+kaolinite, quartz+gypsum, kaolinite+gypsum
- Retrieval with the best statistical fit for each sample was identified
- Results analyzed as function of season and local meteorology

ARM Dust Optical Depth and Composition Distribution

There are several other interesting results from this analysis.

Please stop by our poster (Bedka and Turner, Row 6-H) for more details!

Thank you to Beat Schmid for presenting this for us.