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Climate and Climate Change

Basic curiosity - understanding the climate system

With the advancement of knowledge, through theory and
measurements, an increasing desire to know the properties of all the
components of the system and the interactions between them

Understanding climate variations and change, including those
caused by internal and external forcings

Goal of climate predictions and projections, much like “weather
forecasts”

Societal needs, questions and concerns - as reflected by
UNFCCC, IPCC and other international bodies. E.g., extremes and
abrupt changes.



Challenges in modeling

Need to continually inject increased realism - explicit incorporation of more physical
and chemical (and biological) processes

Increasing cross-disciplinariness in climate sciences

Need to continually study parameterizations; understand causes of biases; question
both model and measurements including accounting for variability

Improving upon the known biases and limitations, and paying attention to the
advances in fundamental aspects — theory and measurements

Models are ‘tuned’; as physical realism increases, ‘knobs’ for tuning may no longer
exist or give way to newer ones; linkages across classical boundaries (e.g., aerosols
and clouds) demand more stringent consistency checks

Address the climate-centric questions posed by society with models whose reliability
keeps on improving



Modeling “Axioms”

Early recognition (1950s-1960s) of the need for
models and computational infrastructure.

Realization of the need for adequate,
appropriate and relevant physics as the building
blocks for the models.

Recognition that models must be suitably built to
address the complex problems, consistent with
computational power available.

Hardware-to-Brainware expense ratio has
remained approximately steady at 1:1 at GFDL



GFDL Modeling: 1970s to 2000+

By early 1970s, 3 atmospheric models emerged

— Manabe Climate Model: coupled atmosphere-ocean; simple physics; no
climate drift; focus on surface-troposphere long-term changes; multi-century
integrations; computationally fast

- SKYHI model: higher vertical and horizontal resolution; top at mesopause;
focus on stratospheric radiation-dynamical-chemical processes; up to
decade’s worth of simulations possible

- NWP model: research tool; more physics details than in Climate model, but
had drifts; surface and troposphere variations on the intraseasonal to
interannual time scales, especially in the tropics.

From early 2000 onwards, SINGLE model framework for
doing climate science



Essentials.......

* Ask questions of models that can be
answered on the present system using the
current model.

— CPU time — Can it be run on this system?
— Code — Can it be simulated?
— Simulation — Is simulation good enough?



Other Important Issues

Data storage

Ease of analysis

Stabllity of hardware and software
Model code and script environment
Visualization convenience



HISTORY OF GFDL COMPUTING

Growth of Computational Power with Time
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TI ASC Findings

Annual Mean Surface Air Temperature
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YMP Findings
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C90 New Findings
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Global Temperature Indices
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GFDL Coupled Model: CM 2.1

Grid-point model using finite volume method for
atmosphere and ocean dynamics.

Horizontal resolution of atmosphere and land
components is 2x2.5 degrees. Ocean component is 1x1
degrees (finer in tropics).

Vertical resolution of atmosphere is 24 layers. 8 layers in
planetary boundary layer. 4 layers in the stratosphere
with highest layer at ~3 hPa or ~40 km.

Coupled model description and performance - Delworth
et al (J. Clim., 2005); atmospheric component
description - Anderson et al (J. Clim., 2004)
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The development of climate models, past, present and future
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Climate Forcing (IPCC, 2001)

The global mean radiative forcing of the climate system
for the year 2000, relative to 1750

3
LT l
L | Haloeatbons

T 2 N,O Agosols )
= A
= L CH, Black 1
TG carbon from
5 £ 1 CO, , fossil
= -E: Troospheric fual
5 i KzZana burning 1
oL
=
o 0 T
= == il T
= L Stratosphdric - [ Drganic ]
5 g DTGNS carbon muonaee i
5s5a} Stiphata /T Euning ki talbedo!
ze fual g only
Z B burning
=
g af -

High Medium WNedium Low  Very  Very Very Vey  Very  Very Ve Very
Low Low Low Low Low Low Low Low

Lavel of Scientific Understanding



One-way Coupling (completed)

Emissions| — (Chem'\ifgfﬁifﬁ " eUsed in GFDL simulations for
IPCC/AR4, CCSP, AEROCOM

eImpact of changing emissions on

Ozone, aerosol climate
distributions

eHistorical runs (1860-present,
decadal)

sFuture runs (present-2100,
CM2 decadal) for A2, A1B, B1 scenarios

Coupled Climate Model
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Comparison of Clear-Sky SW @ TOA
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ARM GREAT PLAINS
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Temperature (K)
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WMGG SW Change In Abs.
[2000-1860]
{Clear-sky; GFDL LBL}

Gases Stratos. Tropos. Sfc.
ADbs. ADbs.
All 0.55 0.44 -0.86
CH4+CO2 |0.53 0.43 -0.84
CO2 0.31 0.04 -0.31
(CH4) 0.22 0.40 -0.53
Solar CH4 comparable to Solar CO2




Future = Computers will
continue to get more powerful.

his allows:
* the model grids to become finer,

 model physical parameterizations to
become more complex,

* more components to be added.




Future Challenges

More explicit descriptions and understanding of
the aerosol, cloud and precipitation problems

=» Convection-Clouds-Microphysics-Radiation-Precipitation
=» Emissions-CCN-Aerosols-Clouds
=» Land surface-atmosphere interactions

= Atmosphere-biosphere interactions (e.g., C, N cycles)

*



Aerosol effects associated with
Clouds [NRC, 2005]

 Twomey effect (cloud albedo effect) = -
* Albrecht effect (cloud lifetime effect) =» -
« Semi-direct effect (abs. aerosols) = +
o Glaciation (mixed-phase clouds) = +
 Thermodynamic (mix-phase clds) =>» ?

Surface energy (All cloud types) > -
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from John Dunne, GFDL




Future Demands on Models

* Understanding the climate system:
- feedbacks, variations:

- human-induced, natural, and unforced
changes

* Projections and predictions of climate on
an “operational” basis



Future:
Likely substantial improvements in Climate
Science over the next 10 years?

 Improved knowledge base on clouds, their role In
feedbacks and aerosol-(warm) cloud linkages

* Long term climate change (multiple centuries) and
stabilization using “realistic” scenarios

* Interactions and feedbacks between physical climate
and biogeochemical systems

e Detection/attribution of climate change

— Better understanding of natural variations (ENSO,
NAO, AAOQO, PDO, etc.)

e Oceanic heat uptake and transport
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