Introducing SAM (Sun and Aureole Measurement), a New, Ground-based Capability for Measuring Cloud Optical Properties

Presented to Cloud Properties Working Group IRF Working Group ARM Science Team Meeting

John DeVore (devore@visidyne.com) A.T. Stair (ats@visidyne.com) Bob McClatchey¹ (RMcClatchey@msn.com)

> Visidyne, Inc. 781-273-2820 March 2006

¹ Consultant

Sun Tracker Advantages for Cloud ODs

- More dynamic range for measuring OD
- No assumptions about the scatterers
- Not affected by the ground albedo

Plot based on Monte Carlo calculations

Example Calculations of Aureole Profiles

Profile shape determined by size distribution

Solar elevatio $n = 45^{\circ}$

Example SAM Dataset

- Note large dynamic range (~4 decades)
- OD ~ 1.3 (uncorrected)
- Corresponds to photo on title chart

Model Comparisons with SAM Data

- Same models as in chart #3
- Best fit is for cirrus distribution of ice crystals
- OD difference is due to forward scattering

Parametric Model Fit to Data

- Parametric in power-law slope
- Best fit slope ~ -3.0
- Best fit OD = 1.5

Particle Size Retrievals

- Power-law model with slope = -3.0
- Simple diffraction model approximation results in an analytic size inversion

Forward Scattering Correction for OD

- Forward scatter reduces apparent OD
- Correction increases with OD
- Correction depends upon shape and size

Based on Monte Carlo calculations

SAM Complements AERONET Instruments

Quantity	AERONET	SAM
Scatterer	aerosols	clouds (and aerosols)
Size range	~ 0.1 – 1 µm	~ 1 – 100 µm
OD range	0 to ~1	0 to ~ 5 (ice) ~ 10 (water)
Minimum aureole angle from disk edge	~2.25°	~0.25° (breadboard)
Measurement frequency	~ 1 hr (typical)	~ every few secs (maximum)
Field of View or Field of Regard	~120° (Scan FOR)	+/- ~8° (FOV) (breadboard)
Pixel FOV	1.2°	0.015° (1024 x 1280)
OD measurement accuracy (absolute)	0.01	≤ 0.05 (breadboard)
OD measurement precision (relative)	0.01	~0.02 (breadboard)

- SAM measures larger particles
- SAM corrects AERONET OD for cirrus

Postulated SAM Applications

- Climate (cloud) monitoring
- Cloud physics research
- Complements AERONET
- Satellite cloud algorithm cal/val
 - EDRs (NPOESS, GOES-R)
 - CDRs (NPP)
- . . .
- Data shown taken with breadboard instrument
- Visidyne has built 3 prototype instruments
- Visidyne is seeking collaborative projects to demonstrate the utility of SAM

