
1

P.Kiedron 02/26/2007

Automated radiometric calibration of RSS105

In this document I describe the process that I was performing off-line with the help of
four Igor programs since May 2003. Hopefully information contained here will suffice
for anybody to replicate the calibration process and write automated or semi-automated
calibration software and database. The document should be used with the files containing
results of intermediate and final calculations for two cases of calibration (use archives
AutoRadCalibFiles.tgz that contain 22 text files).

Objectives

From calibration file we want extract the following

(1) Coefficients k0, k1, k2, C0, DrkSlope, that go to to_jrss.txt file

Note 1: k0=k2=0. Only k1 is non-zero and it’s calculated from calibration data. k1 is entered into
to_jrss.txt file only after passed through a filter that takes into account previously obtained k1 values.

and

(2) Responsivity in Hz/(W/m2/nm) that goes to resp_jrss.txt file.

Files to_jrss.txt and resp_jrss.txt are inputs to jrss program that produces C1 files and
subsequently Langley files from C1 direct normal irradiances.

Calibrators

Currently two lamp sources are used: PortCal (currently P128) and Licor (currently
with bulb ORL787). The number 128 is hard wired and shows up in calibration file

RSS105.20061211_200952.Calibration.PC128.SGP as text

PORTABLE CALIBRATOR = 128

In case of Licor 5-digit number shows up in the file:

RSS105.20061211_201859.Calibration.PC65533.SGP as text

PORTABLE CALIBRATOR = 65533

Note 2: For Licor the number is determined by one of 4 combinations of two switches on the “fake
calibrator” attachment. See InstructionPortCalRSS.pdf and InstructionLicorOrielRSS.pdf at
http://www.arm.gov/publications/tech_reports/handbooks/rss/manuals/

2

The operator at SGP (RSS105 location) can make a mistake resulting in a wrong number
in the file. Occasionally the operator my run Oriel spectral Hg-Cd lamp and make the
mistake when selecting the switch position. For this reason the program should be able to
spot Hg-Cd lamp measurement from data quality. However there is only one Licor and
thus it is prudent that any 5-digit number may indicate that a possible Licor calibration
took place. The Hg-Cd calibration will be weeded out by the program.

Note 3: We no longer perform routine spectral lamp (Hg-Cd) measurements. The wavelength-to-pixel
registration is obtained from Fraunhofer correlation routine that analyzes each solar scan and assigns
wavelength-to-pixel registration to it. Since the deployment in May 2003 the spectrum gradually shifted
over 2.5 pixels.

Calibrators irradiance scale

A calibrator (lamp) has its irradiance scale assigned to it as a table of irradiance in
W/m2/nm versus wavelength in nm. The irradiance scale may change in time. The
lamps in calibrators may be changed. If this would occur we will assign a new irradiance
table.

So far the same P128 and the same Licor lamp (#787) were used since May 2003. We
monitor once every two months the ratio between the two irradiances when both
calibrators are used in a quick succession. The ratios remained constant over 3.5 years to
within ±1% (1-sigma) at all wavelengths. (This is an astonishing outcome!)

When a new lamp will be placed in PortCal then, most likely, we will change its internal
code and a new number, say P139 would appear. The further complication is that PortCal
does not have independently assigned irradiance scale. Its scale is based on Licor and it’s
transferred via the RSS105 during the first several calibrations.

On the other hand, Licor provides irradiance scale with each of its lamps. If a new lamp
is placed in Licor, there will be no change in the 5-digit code. For these reasons we must
keep track of lamps and their scales in the software or a database to know which
irradiance scale is applicable.

Digression: RSS105 is basically calibrated from a single NIST traceable Licor lamp ORL787.

Exposures and number of scans during calibration

Number of exposures and cycles during calibration is governed by the J command that is
part of initialization in xtty program. From RSS (Lee Harrison’s) firmware manual
UserInfo(21).pdf available at http://www.arm.gov/publications/tech_reports/handbooks/rss/manuals/

"J" provides a user command to set the Portable Calibration control variables in the
following order: # cycles of the exposure sequence, minimum exposure, exposure
increment, and maximum exposure (in hundredths of second). The cycles are limited to 1
... 50 and all the other numbers must be 10 ... 1791 ... the latter upper limit somewhat
arbitrary but this tends to limit really CRAZY total burning times and also prevents
endless loops.

3

The current standard for ASRC's RSS (and what is set by default on reset) is:
J 10 20 20 120 \ ten cycles of 0.20, 0.40, 0.60, 0.80, 1.00, 1.20 sec

We ran “ J5 50 50 250” up to about 10/21/2004 and “J 3 20 20 240” thereafter.
Currently, when P128 is measured, there are 38 scans in the following sequence of
exposures:

240, 240, and 3 times this (20,40,60,80,100,120,140,160,180,200,220,240)

Each scan generates in the file a header and two columns of 1040 numbers. The first
column is measured counts with an open shutter (sig) and second is with closed shutter
(drk). Exception are the first two exposures (for PortCal only). They are done with
closed shutter to measure a stray light. We haven’t seen any stray light, so we do not use
the first two exposures. THE FIRST TWO EXPOSURES (SCANS) ARE IGNORED
WHEN PROCESSING P128 FILE! So we process only 36 exposures.

When Licor is measured, there are 36 scans in the following sequence of exposures:

3 times this sequence (20,40,60,80,100,120,140,160,180,200,220,240). All of them
should be processed.

Parsing calibration file

When calibration file is read and parsed the usual precautions should be used and relied
upon: (1) number of expected exposures should be verified, (2) number of rows (1040)
should be verified, (3) appropriate sequence of exposures should occur, (4) time stamps
should proceed in semi linear way (after taking into account the delay due to exposure
value), (4) only two columns should be detected.

Any violation could be a ground for rejection of the calibration file, however one can
imagine fixing some departures from the ideal file. This could be done but rather only
manually.

Correlation test

This test allows weeding out mislabeled Hg-Cd lamp and some very bad scans. It can be
used during file parsing.

Procedure: Correlation

For all scans do the following

net=sig-drk
net_shifted=net(pix+30) //pix are pixels

a=average(net in 100pix-900pix)
b= average(net_shifted in 100pix-900pix)
c=average(net* net_shifted in 100pix-900pix)

4

Correlation=c/(a*b)
End

In Figure 1 example of correlation for all 38 scans of P128 is given.

Figure 1. Example of correlation for all 38 scans from P128 measurement. (In the case of P128 correlation
for the first two scans do not need to be calculated.)

QC plots

Through this document various plots will be generated that could be used as plots in
calibration QC to help the operator in making a decisions. Ultimately the calibration, will
not be 100% automated. An operator will have to press the button to accept or reject the
calibration on the basis of plots and some numbers. Figure 1 should be a QC plot.

All examples will be based on two calibration files:

RSS105.20061211_200952.Calibration.PC128.SGP

RSS105.20061211_201859.Calibration.PC65533.SGP

All intermediate calculation results are included in the archives: AutoRadCalibFiles.tgz
They should be used in the process when developing new software.

5

Another example of QC plot is a plot of all net=sig-drk scans (see Fig. 2). One can see
quality of data and certainty Figure 2 can help to spot bad scans or mislabeled Hg-Cd file
right away.

Figure 2. Net counts for all scans. (In the case of P128 the first two scans do not need to be plotted.)

Multiple calibrations per day

When more than one calibration per day is performed, then the resulting responsivities
are averaged and only single responsivity per day is assigned in resp_jrss.txt file. Also
other parameters like C0, DrkSlope and k1 are averaged.

Note 4: Currently, SGP operator performs semi-simultaneous PortCal and Licor calibrations once every
two months.

Calibration processing: Part 1

The following is based on Igor ReadCalib_Rss105.pxp that reads and processes
calibration file to the point of generating average counts per second and parameters k1,
C0 and DrkSlope. The following is a rather free transcription of Igor routines.

Note 5: All arrays in Igor are counted with its index starting at 0.

6

Note 6: Igor has extended arithmetic with NaN values. All Igor routines (when calculating averages or fits)
ignore NaN values in arrays. This is very convenient and it simplifies programming. In other languages
this must be handled in other ways and may turn out to be more cumbersome.

Procedure1: Dark Intercept and Slope

For all scans do the following

Exposure= Exposure/100 //exposures in seconds
Drk_avg= average(drk in 100pix-900pix)

Plot Drk_avg vs. Exposure
Fit straight line //y=intercept+slope*x
Get C0=intercept //(in cts)
Get DrkSlope=slope //(in cts/sec)

//(the fit can be repeated to remove largest residuals)
End

In Figure 3 the plot of average dark values and fit results are presented.

Figure 3. Dark average versus exposure (In the case of P128 dark for the first two scans do not need to be
plotted or used in calculations.)

7

Procedure2: Get averages header parameters

Avg_TimeStamp (Lee jd1900) //this will be used to get pixel shifts
32 averages for each header entry
Avg_Header[j] j=0,…,31 //j=1 is CCD temperature

End

Output sample Proc1 and 2: See files Output_P128.txt and Output_Licor.txt

Row 2: Avg_TimeStamp
Row 9: C0
Row 10: DrkSlope
Row 26-57: Avg_Header (32 values)

Procedure3: Get Net cps 2-D Array
//Nmax=60000 THIS IS INPUT PARAMETER.
// nscn of scans (nscn=38 or 36 currently)

scn=0 //loop through all the scans
do

pix=0
do

A_net[pix][scn]= (sig[pix]-drk[pix])/Exposure[scn] //cts per sec
 if(sig[pix]>=Nmax)
 A_net[pix][scn]= NaN //saturated CCD
 endif

pix=pix+1
while(pix<1040)
A_net[523][scn]=(A_net[522][scn]+A_net[524][scn])/2 //bad pixel=523

scn = scn +1
while(scn < nscn)

End

Explanation: Usage of this array is for convenience of further programming. It could be
generated when ingesting the calibration file.

Output sample Proc3: See files A_net_P128.txt and A_net_Licor.txt

8

Procedure4: Get Filtered Net 2-D Array

If Pxxx then nk=2 else nk=0 endif //to exclude first two scans for Pxxx (P128)

make/o/n=(nscn-nk) tempor //nscn=38 or 36 currently

pix=0
do

scn=nk
do

tempor[scn-nk]=A_net[pix][scn] //extract rows

scn=scn+1
while(scn<nscn)

wavestats/q tempor //get stats of tempor (average V_avg and location
 // location of max V_maxloc and
 //min values V_minloc

a=V_avg
tempor[V_maxloc]=NaN
tempor[V_minloc]=NaN

wavestats/q tempor // V_npnts is number of points that are not NAN’s
if(V_npnts==0)

tempor=a
endif

scn=nk
do

Afilt_net[pix][scn]=tempor[scn-nk]

scn = scn +1
while(scn<nscn)

pix=pix+1
while(pix<npix)

End

Explanation: Afilt_net has min and max removed for each pixel. Thus Afilt_net will have
2040 more NaN’s than A_net.

Output sample Proc4: See files Afilt_net_P128.txt and Afilt_net_Licor.txt

9

Procedure5: Get Weighted Average Non-Linearized Net cps

If Pxxx then nk=2 else nk=0 endif //to exclude first two scans for Pxxx (P128)

make/o/n=1040 AvgNet

Numer=0
Denom=0

pix=0
do

scn=nk
do

b= Afilt_net[pix][scn]

if(b IS NOT NaN) //NaN’s are excluded

a=sqrt(Exposure[scn])
Denom = Denom +a
Numer = Numer +a*b

endif

scn= scn+1
while(scn<nscn)

AvgNet[pix]= Numer / Denom //average weighted by sqrt of exposures

pix=pix+1
while(pix<1040)

End

Explanation: the average is weighted by square roots of exposures because standard
deviation of Poisson noise is proportional to square roots of exposure.

Output sample Proc5: See files Output_P128.txt and Output_Licor.txt The AvgNet is in rows: 59-
1098. In the file OutArray_111CalsTill39106.txt there 111 processed calibrations in the same format as the
above files.

10

Procedure6: Get Non-Linearity Coefficient k1

make/o/n=(nscn-nk) tempor, temporx

make/o/n=(15*10) gfun, cfun //150 long arrays; may contain NaN’s

k=0
do

scn=nk
do

pix=0
do

net[pix]=Afilt_net[pix][scn]

pix=pix+1
while(pix<npix)
net=net+DrkSlope // adding drk, i.e., DrkSlope from Procedure1
temporx[scn-nk]=Exposure[scn]
wavestats/q/R=(100+50*k,150+50*k) net //to get avg in 50 pixel intervals
tempor[scn-nk]=V_avg* Exposure[scn] // avg times exposure (tot counts)

scn=scn+1
while(scn<nscn)

sort tempor, tempor, temporx //this sorting (ascending) is to weed out NaN’s (NaN’s will
 //be at the end Igor sorting)

wavestats/q tempor //this return V_npnts which is number of non NaN points
redimension/n=(V_npnts) tempor, temporx //cuts off NaN’s

//last three lines are not necessary in Igor

wavestats/q temporx //gets min and max values
a1=V_min
a2=V_max
CurveFit/q poly 3, tempor /X=temporx /D //fits trinomial to counts vs. exposure

 // return wc[0], wc[1], wc[2] coefficients

//the following prepares gfun and cfun to obtain k1
i=0
do

xx=a1+i*(a2-a1)/9
yy=(xx*1.05-xx*.95)/xx
yy=yy*poly(wc,xx)/(poly(wc,xx*1.05)-poly(wc,xx*.95))
cfun[10*k+i]=poly(wc,xx)
gfun[10*k+i]=yy-1 // g(C)= g(C) –1 substitution

i=i+1
while(i<10)
// where poly(wc,xx)=wc[0]+wc[1]*xx+wc[2]*xx^2

k=k+1
while(k<15)

Do linear fit gfun=k1* cfun with intercept set to 0 //intercept must be 0! (See Appendix I)

End

11

Explanation: First we obtain averages of counts in 50 pixel intervals. These counts
have DrkSlope added and are multiplied by exposure. There is 15 intervals (100, 150),
(150,200),…,(800,850). For each interval we expect to have nscn-nk=36 averages for
various exposures unless some interval’s average is NaN (like for large exposure). This
may happen in regions where CCD saturates. For each interval we fit a trinomial to
counts vs. exposure. We end up with 15 trinomials.

For each interval we use the trinomial function to build gfun and cfun arrays. The first is
dimensionless and the second is in counts. Each array is 10 long. The exposure range is
divided by 10 equidistant points xx and the counts cfun are equal to the value of the
trinomial at xx.

The g fun array is more tricky. The approach stems from the solution to the
difference/differential equation. It is explained by equations (2-4) in the publication
SPIE02_4815_13_kiedron.pdf available at:
http://www.arm.gov/publications/tech_reports/handbooks/rss/publications/

The reasoning is repeated here. Let’s C(I) denotes counts at a given pixel or pixel
interval due to irradiance I. There exist a function f(C)=I that for any C returns I. This
function is an inverse of C(I). Let us define the function g(C) as follows from a
difference equation:

€

g(C) = C (I k) ≈
I k − I k+1

I k

C (I k)
C (I k) −C (I k+1)

that we change to the differential equation

€

g(C) =
dI
I

C
dC

=
df (C)
f (C)

C
dC

=
C
f (C)

df (C)
dC

This differential equation has the following solution with respect of f(C):

€

f (C) = A ⋅C ⋅ exp g(c) −1
c

dc∫

 If in the last equation we set g(C)-1=k1*C, then

€

f (C) = A ⋅C ⋅ exp k1 ⋅C()

This is the linearizing function CountsCorrected(cts, YesOrNo, k0,k1,k2) with k0=k2=0
that is used by the jrss. It is in the original document RSS105SignalNoise_Oct04_1pk.pdf
that gave basic equations used by jrss. (see Appendix I or
http://www.arm.gov/publications/tech_reports/handbooks/rss/manuals/)

12

It has to be emphasized that irradiances Ik are not available but the exposures Ek can serve
as their proportional surrogates (keep in mind that g(C) is a dimensionless function):

€

Ek − Ek+1

Ek

=
I k − I k+1

I k

Output sample Proc6: See cfun_gfun_P128.txt and cfun_gfun_Licor.txt. The value of k 1 is in
Output_P128.txt and Output_Licor.txt in row 18.

In Figure 4 a fit between gfun and cfun is presented.

Figure 4. g(C)-1 plot against C counts. The slope of the linear fit is k1 coefficient.

The outliers between 5k-10k cts are from 750-800 pixel interval. Apparently in that
region linearity behavior might be different. This is more pronounced for P128 calibrator
that has different color temperature and thus different count distribution in this interval.
Nevertheless we use single non-linearity correction for all pixels. It seems to work and
trying to make different corrections in different pixel regions would generate an
impossible amount of testing.

13

Procedure7: Get Linearized Net Array

scn=nk
do

pix=0
do

net[pix]=Afilt_net[pix][scn]

pix = pix +1
while(pix <npix)

net=CountsCorrected((net+DrkSlope)*Exposure[scn],1,0,k1,0) //see Appendix I for
//this function

net=net- DrkSlope * Exposure[scn]
net=net/ Exposure[scn]

pix=0
do

Alin_net[pix][scn]=net[pix]

pix = pix +1
while(pix<npix)

scn = scn +1
while(scn <nscn)

End

Procedure8: Get Weighted Average Linearized Net cps

If Pxxx then nk=2 else nk=0 endif //to exclude first two scans for Pxxx (P128)

make/o/n=1040 AvgNetLin

Numer=0
Denom=0

pix=0
do

scn=nk
do

b= Alin_net[pix][scn]

if(b IS NOT NaN) //NaN’s are excluded

a=sqrt(Exposure[scn])
Denom = Denom +a
Numer = Numer +a*b

endif

scn= scn+1
while(scn<nscn)

AvgNetLin[pix]= Numer / Denom //average weighted by sqrt of exposures
pix=pix+1
while(pix<1040)

End

14

Note 7: Procedure 8 is procedure 5 where instead of Afilt_net Alin_net is used

Output sample Proc7 and 8: See files Output_P128.txt and Output_Licor.txt. The AvgNetLin is in rows:
1100-2139.

To demonstrate that linearization works we generate two plots in Figure 5 where we plot
ratios of net/AvgNet and net_linearized/ AvgNetLin for all exposures, where net are
columns in Afilt_net and net_linearized are columns in Alin_net. Then the ratios are
smoothed with 25 pixel moving average. The Figure 5 is the proverbial pudding.

Figure 5. Rations of net/AvgNet and net_linearized/ AvgNetLin.

Also it might be useful to plot as part of QC AvgNet and AvgNetLin and their ratio (see
Figure 6).

Figure 6. AvgNet, AvgNetLin and ratio AvgNet/ AvgNetLin

Note 8: AvgNet will not be used hereafter! It’s value has no effect on C1 files.

15

Calibration processing: Part 2

The following is based on three Igor programs

Process1_nmCorrect.pxp
Process2_Trnds.pxp
Process3_ApplyIrrad.pxp

However we introduced some modifications that may results that the new resposivities
might be negligibly different from the old ones.

Inputs

The following inputs are necessary:

AvgNetLin, Avg_TimeStamp, nm_precursor, LampIrrad, dpixBlue, dpixRed

Note 8: Irradiance files are prepared so LampIrrad is sampled in nm_precursor. Obviously this is not the
way irradiance scale comes from Licor, but for convenience I prepared them that way.

Obtaining responsivity

Step 1: From TimeStamp obtain pixel shifts dpixBlue, dpixRed. This program already
exists in jrss.

Step 2: Calculate NewNM from nm_precursor and dpixBlue, dpixRed using wavelength
interpolating program getNewNM(dpixBlue, dpixRed, “nm_precursor”) (see Appendix I)

NewNM is wavelength-to-pixel assignment during calibration.

Input data are from: Irrad_Licor787.txt, Irrad_P128.txt, nm_precursor.txt. The following
pixel shifts were used in examples:

(dpixBlue, dpixRed)=(-2.5187,-2.7404) for Licor
(dpixBlue, dpixRed)=(-2.6248,-2.9032) for P128

Step 3: from AvgNetLin (it is in NewNM grid) obtain AvgNetLin(nm_precursor) in
nm_precursor grid. Use equivalent of Igor linear interp function:

 AvgNetLin(nm_precursor)=interp(nm_precursor, NewNM, AvgNetLin) where

AvgNetLin is from Output_Licor.txt and Output_P128.txt files.

16

Step 4: Calculate Responsivity in nm_precursor grid:

Responsivity = AvgNetLin(nm_precursor)/LampIrrad

The results are in Results_Part2.txt where there are six 1040 long arrays. Among them:
Responsivity and NewNM for both Licor and P128 and the average responsivity. The
average goes to the resp_jrss.txt.

Step 5: If more then one calibration in one day get averages of: C0, DrkSlope, k1,
Responsivity. Also the average of NewNM can be performed. (NewNM is not used by
jrss!)

Step 6: The filtered k1 goes to to_jrss.txt file. Currently the filter consist of straight line
fit to the current and the nearest (in time) four k1 values vs. time. The results are in
Figure 6A in Appendix 2. It seem that a simple box car 2 or 3 point average can do a
good job as well, particularly when there is no steep trends as during the first 3-4 months
after the deployment (see Figure 6A).

Step 7: Generate various QC trend plots. It is the last chance to reject calibration.
(See Appendix II for the trend plots)

Step 8: Generate to_jrss.txt and resp_jrss.txt files. In resp_jrss.txt set the middle column
to 0; first column is NewNM (not used) and the last column is Responsivity; in the header
there are pixel shifts. All values are averages (including shifts and NewNM) in case of
multiple calibrations in one day. Keep in mind there is only one entry per day in the file.

Since some changes were introduced when transcribing the Igor procedures we obtained
slightly different results. The differences are negligible (see Figure 7).

Figure 7. Comparison of results following this document and those in existing resp_jtss.txt and to_jrss.txt
files

17

Appendix I: Some functions

Linear fit with fixed intercept

Say we have two arrays {yi} and {xi} and fit straight line y=a*x+b where b has a
fixed value.

To minimize the equation

€

f (a,b) = y i−a ⋅x i−b()∑
2

with respect of a we get derivative

€

∂f
∂a

= −2 y i−a ⋅x i−b()∑ ⋅x i

that leads to the following solution for a

€

∂f
∂a

= 0 ⇒ (∑ y i−b) ⋅x i−a xi
2∑ = 0

€

a =
(y i−b) ⋅x i∑

xi
2∑

Linearizing function

//This func returns corrected counts
function CountsCorrected(cts, YesOrNo, k0,k1,k2) //Example of parameters for rss104 would be
{1,0,-12.5e-07,0}
variable cts, YesOrNo, k0,k1,k2

variable r

r=cts

if(YesOrNo==1)
if(cts>0) // This is so because cts^k0 can get flaky for cts<0 and even for cts=0

r=cts*cts^k0*exp((k1+k2*cts)*cts)

endif

endif

return r

End

18

Wavelength interpolating function

function getNewNM(dp1,dp2, s_OldNM)
variable dp1,dp2 // shifts at 0 (Blue) and 1039 (Red) pixels
string s_OldNM // name of oldNM wave as string

wave OldNM=$s_OldNM // passing global wave

make/o/n=1040 pix, dpix // local wave

pix=p // pix=0,1,...,1039
dpix=pix-((dp2-dp1)/1039*pix+dp1) // dpix is pix shifted (There is a "minus"

//sign because of the nature of
//Fraunhofer! Verified empirically!)

make/o/n=1040 NewNM

NewNM=interp(dpix,pix, OldNM) //Igor linear interpolating function

End

Example of usage:

getNewNM(dpixBlue, dpixRed "nm_precursor")

19

Appendix II: Trend plots for QC

Figure 1A. Shows trend of C0, DrkSlope and CCD temperature

Figure 2A. Trend of k1 coefficient: raw data (red), smoothed with current method (blue), 2 pnts boxcar
smth (green)

20

Figure 3A. Shows smoothed ratios of Licor-to-PortCal “coincidental” responsivities. Most recent are
labeled in different colors.

Figure 4A. Shows trend at several pixels smoothed (15 pixels) ratios of Licor-to-PortCal coincidental
responsivities. (±10 pixel averages are taken)

21

Figure 5A. Ratio of responsivities to the last responsivity. The last five are labeled with different colors.
The ratios are plotted against wavenumbers that are obtained from nm_precursor as follows:

10^4/(nm/1000). The last one (the red one) is constant=1.

Figure 6A. Ratio of responsivities to the last responsivity for several selected pixels (wavelengths).

22

Figure 7A. Pixel shifts obtained from calibration times. (in 2005 the pixel shifts were not updated!)

Final remarks

Generating some QC plots (Figs. 5A, 6A, 7A and parts of 1A and 2A) could be done
using existing to_jrss.txt and resp_jrss.txt files with temporarily added the most recent
calibration data still before accepting them.

Some graphs need data that are not in the to_jrss.txt and resp_jrss.txt files.

Licor2PortCal_AllTill39061.txt file can be used to plot Figs 3A and 4A.

OutArray_111CalsTill39106.txt can be used to extract CCD temperature for Fig. 1A and
the unsmoothed individual (no daily averages) k1 values.

Other option is that after developing the new calibration processing program all
calibrations could be reprocessed and then the old results would be discarded. This
would be a hard task that would lead to regenerating C1 files with slightly different
responsivities and parameters. I am not sure that we want to do it. The differences
would be small. Then we would have to re-archive all files. This certainly would result
in some confusion for users. Therefore, personally, I prefer that the calibration database
should be populated with the past results, unless – of course – the new processing
program would demonstrate that the past results are grossly incorrect.

