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Executive Summary 

In March and April of 2015, the ARM Doppler lidar that was formerly operated at the Tropical Western 
Pacific site in Darwin, Australia (S/N 0710-08) was deployed to the Boulder Atmospheric Observatory 
(BAO) for the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field campaign. 
The goal of the XPIA field campaign was to investigate methods of using multiple Doppler lidars to 
obtain high-resolution three-dimensional measurements of winds and turbulence in the atmospheric 
boundary layer, and to characterize the uncertainties in these measurements. The ARM Doppler lidar was 
one of many Doppler lidar systems that participated in this study. 

During XPIA the 300-m tower at the BAO site was instrumented with well-calibrated sonic anemometers 
at six levels. These sonic anemometers provided highly accurate reference measurements against which 
the lidars could be compared. Thus, the deployment of the ARM Doppler lidar during XPIA offered a rare 
opportunity for the ARM program to characterize the uncertainties in their lidar wind measurements. 

Results of the lidar-tower comparison indicate that the lidar wind speed measurements are essentially 
unbiased (~1cm s-1), with a random error of approximately 50 cm s-1. Two methods of uncertainty 
estimation were tested. The first method was found to produce uncertainties that were too low. The 
second method produced estimates that were more accurate and better indicators of data quality. As of 
December 2015, the first method is being used by the ARM Doppler lidar wind value-added product 
(VAP). One outcome of this work will be to update this VAP to use the second method for uncertainty 
estimation. 
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Acronyms and Abbreviations 

ARM Atmospheric Radiation Measurement Climate Research Facility 
BAO Boulder Atmospheric Observatory 
CABL Characterizing the Atmospheric Boundary Layer 
DOE U.S. Department of Energy 
EERE DOE office of Energy Efficiency and Renewable Energy 
ESRL Earth Systems Research Laboratory 
kHz kilohertz 
km kilometer 
lidar light detection and ranging 
LOS line-of-sight 
NCAR National Center for Atmospheric Research 
NOAA National Oceanic and Atmospheric Administration 
NSF National Science Foundation 
PNNL Pacific Northwest National Laboratory 
PPI plan-position-indicator 
PRF pulse repetition frequency 
SGP Southern Great Plains, an ARM megasite 
TWP Tropical Western Pacific, an ARM research site 
VAD Velocity-azimuth-display 
VAP Value-Added Product 
XPIA eXperimental Planetary boundary layer Instrument Assessment 
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1.0 Background 

The primary goal of the eXperimental Planetary boundary-layer Instrument Assessment (XPIA) field 
campaign was to investigate methods of using multiple Doppler lidars to obtain high-resolution three-
dimensional measurements of winds and turbulence in the atmospheric boundary layer, and to 
characterize the uncertainties in these measurements. The field campaign was conducted at the Boulder 
Atmospheric Observatory (BAO) (Kaimal and Gaynor, 1983) in March and April of 2015 with funding 
from the U.S. Department of Energy's (DOE) office of Energy Efficiency and Renewable Energy 
(EERE). The principle investigators for XPIA included Julie Lundquist from the University of Colorado, 
and Jim Wilczak from the National Oceanic and Atmospheric Administration (NOAA)’s Earth System 
Research Laboratory (ESRL). Other participants included the National Center for Atmospheric Research 
(NCAR), Texas Tech University, the University of Dallas, Pacific Northwest National Laboratory 
(PNNL), and the University of Maryland, Baltimore County. 

Multiple Doppler lidar systems, including scanning and profiling systems from different manufacturers, 
were deployed in close proximity to the BAO’s heavily instrumented 300-meter (m) meteorological 
tower. The BAO tower was instrumented specifically for XPIA with well-calibrated sonic anemometers at 
six levels. These sonic anemometers provided highly accurate reference measurements against which the 
lidars could be compared. The ARM Doppler lidar that was formerly deployed in Darwin Australia (S/N 
0710-08) was one of several scanning Doppler lidar systems that participated in this field campaign. The 
deployment of ARM Doppler lidar provided the opportunity for the ARM program to exploit the unique 
observational capability of the 300-m BAO tower during XPIA to quantify the uncertainties in wind 
measurements. 

The ARM Doppler lidar is a commercial-grade system manufactured by Halo Photonics Inc. in England. 
This instrument provides range-resolved measurements of attenuated aerosol backscatter and radial 
velocity, i.e., the velocity component parallel to the beam. The system employs an eye-safe laser 
transmitter operating at a wavelength of 1548 nm, a pulse energy of ~100 �J and a high pulse repetition 
frequency of 15kilohertz (kHz). The instrument incorporates a full upper hemispheric scanner that can be 
configured to operate in either step-stare or continuous scan mode. The internal processor can be 
configured to operate using a wide range of pulse accumulation times and range gates sizes. During 
XPIA, the ARM Doppler lidar was operated using a range gate size of 30-m, and 200 range gates, 
resulting in a maximum measurement range of about 6 km. Typically, the maximum range for usable 
measurements varied between 1 and 3 km, depending on atmospheric conditions. Further details about the 
ARM Doppler lidars can be found in Pearson et al. (2009), and Newsom (2012). 
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Figure 1. Location and setup of the ARM Doppler lidar (S/N 0710-08) during XPIA. 

During XPIA the ARM Doppler lidar was deployed within a small cluster of profiling Doppler lidars 
approximately 140 m south of the BAO tower, as shown in Figure 1. The system was operated at this 
location from 6 March to 16 April 2015. During this time the lidar was operated using a fixed scan 
schedule consisting of the following: 

x 40-second plan-position-indicator (PPI) scan once every 12 minutes,

x 10-minute tower stare once per hour,

x target sector scan once per day, and

x vertical stares otherwise.

The PPI scans were used to derive profiles of wind speed and direction. These scans were performed 
using the step-stare scan mode at an elevation angle of 60o using eight evenly spaced azimuth angles 
around the compass, i.e., 0o, 45o, 90o, 135o, 180o, 225o, 270o, and 315o. The pulse integration time for each 
line-of-sight (LOS) was set to 2 s (30000 laser pulses), and the time required to execute one complete PPI 
scan was about 40 seconds. The lidar was also configured to stare near the south-east sonic at the 50-m 
level of the BAO tower for approximately 10 minutes once per hour. Target sector scans were performed 
in order to accurately determine the lidar’s azimuthal pointing direction relative to true north. Otherwise, 
the lidar stared vertically when it was not busy doing PPIs, target sector scans or tower stares. 

Normally, the BAO tower is instrumented at three levels with slow-response (1Hz) temperature and wind 
sensors. During XPIA six additional levels (50, 100, 150, 200, 250, and 300m) of fast-response (20Hz) 3-
D sonic anemometers (Campbell CSAT3) were added by NCAR. Each of these levels had two sonic 
anemometers, one mounted on a southeast boom (at a heading angle of 154o) and one mounted on a 
northwest boom (at a heading angle of 334o). This ensured that one sonic at each level was mounted on 
the upstream side of the tower, and thus unaffected by the tower wake. The sonic data used in this study 
were tilt-corrected and rotated such that “u” is the easterly component and “v” is the northerly component. 

The main objective here was to characterize the uncertainty in the lidar-derived wind speed and direction 
as computed from the PPI scan data. Moreover, we wished to determine the accuracy of the uncertainty 
estimates and the extent to which the uncertainty estimates are indicators of data quality. This was 
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achieved by comparing the lidar-derived winds with measurements from the sonic anemometers on the 
tower. In the following subsection we briefly describe the method for estimating the precision of the raw 
radial velocity measurements. We then describe the wind retrieval and the uncertainty estimation 
methods. 

1.1 Radial Velocity Precision 

The radial velocity precision, ruG , is an estimate of the noise variance in the radial velocity 
measurement. For a coherent detection system, the noise is dominated by shot noise in the photo detector. 
For this study, the precision was estimated from time-series analysis of vertical staring data using the 
technique described by Lenschow et al (2000) and Pearson et al (2009). The precision estimates were then 
parameterized in terms of the mean signal-to-noise ratio (SNR). Figure 2 shows the end result of this 
process. The blue curve in Fig. 2 was used to assign precision estimates to individual radial velocity 
measurements based on the corresponding SNR. When processing the lidar PPI scan data, an SNR 
threshold of 0.008 was imposed, as indicated by the dotted vertical line in Fig. 2. As a result, radial 
velocities with precisions greater than about 1ms-1 were not used in the processing. 

Figure 2. Radial velocity precision, ruG , as a function of SNR during the XPIA deployment (averaged 
over the period 6 March to 16 April 2015). 

1.2 Wind Retrieval 

The wind retrieval is based on the traditional velocity-azimuth-display (VAD) approach described by 
Browning and Wexler (1968). The VAD algorithm estimates the velocity components of the wind field 
from PPI scan data. At any given height, the PPI scan traces out a circle centered above the lidar position. 
Assuming the flow to be horizontally uniform and steady along the circle, the wind velocity components 
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are retrieved by fitting a sinusoid to the radial velocity data; the amplitude, phase, and offset of the 
sinusoid determine the wind speed, wind direction, and vertical velocity, respectively. The derived winds 
are representative of averages taken over the circumference of the circle and over the time it takes to 
complete a full PPI scan, which in this case is about 40 s. 

At a fixed-range gate, the PPI scan data are used to find the wind velocity components, u, v and w by 
minimizing the following chi-squared function: 
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where u  is the unknown velocity vector,  is a radial velocity measurement, iV is the measurement 

uncertainty, and ir~  is a unit vector from the lidar to the measurement point. The summation in equation 
(1) is performed over all the LOSs in the PPI scan for which there are valid data at the measurement 
height ( 8N d ). Minimizing equation (1) with respect to the components of u  ( u, v and w) results in a 
system of three equations, and three unknowns, u, v and w. The solution is given by 

bCu � , (2) 

where C  is the covariance matrix and b is a vector that depends on LOS direction cosines, measurement 
uncertainties, and the radial velocity measurements. The covariance matrix depends on the LOS direction 
cosines and measurement uncertainties but does not depend on the actual measurements. When the 
measurement uncertainties, iV , are known, the diagonal elements of the covariance matrix give the 
squared uncertainties in the components of the retrieved velocity vector. 

1.3 Uncertainty Estimation 

Accurate uncertainty estimation is crucial for evaluating the quality of the derived winds from the lidar. In 
this study, we consider two methods for estimating the uncertainty in the retrieved wind components, u 
and v. These two methods are described below. 

x Method 1

o Measurement uncertainty: i riuV G  

o Retrieval uncertainty: 11Cu  V , 22Cv  V . 

x Method 2

o Measurement uncertainty: 1iV   

riu
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In Method 1 the radial velocity precisions, riuG , are used as the measurement uncertainties, iV , and the 
uncertainties in the retrieved parameters, u and v, are obtained from the diagonal elements of the weighted 
covariance matrix (Press et al. 1988). In Method 2, the measurement uncertainty is assumed to be 
unknown, and the uncertainties in u and v are estimated by scaling the unweighted covariance matrix with 

2\ . This approach assumes a good fit and precludes an independent estimate of the goodness of fit 
(Press et al. 1988). 

Given the uncertainties in u and v from either method, the estimated uncertainty in the retrieved wind 
speed is given by 

� �1/22 2( ) ( ) /est
M u vu v MV V V �

(3) 

where M is the lidar wind speed, 2 2M u v � , and the estimated wind direction uncertainty is given 
by 

� �1/22 2 2( ) ( ) /est
v uu v MDV V V �

. (4) 

2.0 Lessons Learned 

The deployment of the ARM Doppler lidar to the BAO during XPIA afforded a valuable opportunity to 
characterize the uncertainties in the lidar wind measurements against well-calibrated in situ measurements 
on the 300-m BAO tower. One lesson learned from this deployment is that the lidar wind speed 
measurements are essentially unbiased (~1cm s-1), with a random error of approximately 50 cm s-1, based 
on direct comparisons with the BAO tower. More importantly, it was found that Methods 1 and 2, as 
described in Section 1.3, result in substantially different estimates of the random error. Method 2 gave 
superior results, and provided more accurate uncertainty estimates than Method 1. Currently (as of 
December 2015), Method 1 is being used by the ARM Doppler lidar wind value-added product (VAP). 
One outcome of this effort will be to update this VAP to use Method 2 for uncertainty estimation. 

3.0 Results 

Figure 3 shows representative lidar wind retrieval results for 2 April 2015. The results using Method 1 are 
shown in panel (a) and the results using Method 2 are shown in panel (b). The retrieved wind speed and 
direction for the two methods look qualitatively similar; however, the uncertainty estimates are radically 
different in both magnitude and structure. The uncertainty estimates for Method 1 are much smaller than 
for Method 2. We also notice that the uncertainty estimates from Method 2 tend to follow the variability 
in the flow, whereas the uncertainty estimates from Method 1 vary with the SNR and are largely 
independent of the flow variability. 
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Figure 3. Time-height cross sections for 2 April 2015 showing retrieved winds (top) and estimated 
wind speed uncertainties (bottom) for a) Method 1 and b) Method 2. 

To enable comparison with the lidar-derived winds, 20Hz u and v data from each sonic anemometer were 
averaged in time and then interpolated to the heights of selected lidar range gates. The center times of the 
averaging intervals were set to the center times of the PPI scans, and the averaging intervals were set 
equal to twice the PPI scan durations, i.e. ,nominally 80s. The temporally averaged u and v data were then 
interpolated to the heights of those lidar range gates with heights closest to the anemometer heights. This 
helped to minimize the effects of the vertical interpolation on the final results. The lidar heights that occur 
closest to the sonic heights were 90.9, 142.9, 194.9, 246.8, and 298.8 m. Also, to minimize the effects of 
tower flow distortion on the results, only those anemometers on the upstream side of the tower were used 
in the comparison. 

The comparison is carried out by computing statistics of the wind speed difference 

M sM M'  � , (5) 

and the wind direction difference, 

1 sin cos cos sintan
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where � �1tan /u vD �  is the azimuth angle of the horizontal velocity vector from the lidar, sM  is the 

sonic wind speed, and sD  is the azimuth angle of the horizontal velocity vector from the sonic. The wind 

direction difference s'  is positive when the lidar winds are rotated clockwise relative to the sonic winds. 

Table 1 summarizes the results of the comparison between the lidar and sonic winds using Methods 1 and 
2. The wind speed bias is denoted by M'  and the standard deviation of the wind speed difference is 

denoted by ( )MV ' . Similarly, the wind direction bias is denoted by D'  and the standard deviation of 

the wind direction difference is denoted by ( )DV ' .Also shown is the Pearson correlation coefficient, 

wspdr , between the sonic and lidar wind speeds, and the slope and offset (i.e., intercept) of the linear 
regression between the sonic and lidar wind speeds. These results represent averages taken over five 
height levels (90.9, 142.9, 194.9, 246.8, and 298.8 m) and over the entire deployment period from 6 
March through 16 April, 2015. 

Table 1. Results of the comparison between the lidar-derived winds and the BAO measurements. 

Rejection Rate 0% 50% 

Method 1 2 1 2 

M' (ms-1) -0.04 -0.01 -0.01 -0.01 

( )MV ' (ms-1) 0.85 0.73 0.78 0.35 

wspdr 0.965 0.973 0.971 0.992 

Regression offset (ms-1) 0.192 0.120 0.103 0.040 
Regression Slope 0.967 0.976 0.980 0.993 

D' (deg) -0.84 -0.74 -0.79 -0.64 

( )DV ' (deg) 20.02 18.68 19.18 8.72 

Tests were performed to examine the effect of imposing different MV thresholds on the statistics. Table 1 

shows the results using two different wind speed uncertainty ( MV ) thresholds. The thresholds are defined 
by the so-called data rejection rates of 0% and 50%. A 0% rejection rate corresponds to no data rejection, 
and thus no threshold. A 50% rejection rate corresponds to rejection of all wind speed and direction 
estimates with MV  greater than its median value. 

It is clear from Table 1 that Method 2 outperforms Method 1 in terms of all the statistical metrics 
considered, regardless of the data rejection rate. Although the wind speed biases are quite small for either 
method, Method 2 produces substantially better agreement with the tower sonics in terms of random 
errors, linear regressions, and correlations. Moreover, the results for Method 2 exhibit better improvement 
as the MV  threshold is lowered. This indicates that the uncertainty estimates produced by Method 2 are 
more reliable indicators of data quality. 
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The uncertainty estimates ( est
MV and est

DV ) produced by Method 1 tend to grossly underestimate the 

observed uncertainties ( ( )MV ' and ( )DV ' ). Although Method 2 does a much better job, it also tends to 
underestimate the observed uncertainties somewhat. Figure 4a shows the observed versus estimated wind 
speed uncertainty for Method 2, and Figure 4b shows the observed versus estimated wind direction 
uncertainty. The curves indicate approximately linear relationships between the observed and estimated 
uncertainties. 

Figure 4. Standard deviation of the observed difference versus estimated uncertainty from Method 2. 
Results for a) wind speed and b) wind direction are shown. 

4.0 Public Outreach 

The XPIA field campaign leveraged support from the “Characterizing the Atmospheric Boundary Layer” 
(CABL) educational outreach project (http://www.eol.ucar.edu/field_projects/cabl). This NSF-funded 
project created learning opportunities for high school, undergraduate, and graduate students in Colorado’s 
Front Range. CABL also helped supplement instrument deployments during XPIA. 

5.0 XPIA Publications 

5.1 Journal Articles/Manuscripts 

Lundquist JK, et al. 2015. “Assessing state-of-the-art capabilities for probing the atmospheric boundary 
layer: The XPIA field campaign.” To be submitted to BAMS. 

Lundquist JK, et al. 2015. The XPIA field campaign. DOE Technical Report, to be submitted. 

5.2 Meeting Abstracts/Presentations/Posters 

Brewer WA, et al. 2015. Initial Results from the Experimental Measurement Campaign for Planetary 
Boundary layer (PBL) Instrument Assessment (XPIA) Experiment. 27th International Laser Radar 
Conference, New York, NY, July 5-10, 2015. 

http://www.eol.ucar.edu/field_projects/cabl
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