
DOE/SC-ARM-14-010

ARM Data File Standards
Version: 1.0

ARM Standards Committee

April 2014

DISCLAIMER

This report was prepared as an account of work sponsored by the U.S.
Government. Neither the United States nor any agency thereof, nor any
of their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

DOE/SC-ARM-14-010

ARM Data File Standards
Version: 1.0

ARM Standards Committee

April 2014

 Work supported by the U.S. Department of Energy,
Office of Science, Office of Biological and Environmental Research

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Acronyms and Abbreviations

ADI ARM Data Integrator (formerly known as ISDE)
AGL above ground level
AOS aerosol observing system
ARM Atmospheric Radiation Measurement
ARMBE ARM Best Estimate
ARSCL Active Remote Sensing of Clouds (VAP)
CF Climate Forecast
CLDRAD cloud and radiation
DMF Data Management Facility
DOD Data Object Design
DOI Digital Object Identifier
DQ data quality
ECO Engineering Change Order
EWO Engineering Work Orders
FOV field of view
HDF hierarchical data format
IATA International Air Transport Association
LWP liquid water path
MAOS Mobile Aerosol Observing System
MMCR millimeter-wavelength cloud radar
MPL micropulse lidar
MSL Mean Sea Level
MWR microwave radiometer
MWRRET Microwave Radiometer Retrievals (VAP)
NaN Not a number indicator
NOAA National Oceanic and Atmospheric Administration
NSA North Slope of Alaska
PCM Process Configuration Management
PI principal investigator
QC quality control
QCRAD Data Quality Assessment for ARM Radiation Data (VAP)
SGP Southern Great Plains
SW shortwave
TAR Tape ARchive (file format)
TOA top-of-atmosphere
TSI total sky imager

ii

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

TWP Tropical Western Pacific
UTC Coordinated Universal Time
VAP value-added product

iii

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Contents

Acronyms and Abbreviations ... ii
Standards Committee .. vii
1.0 Introduction .. 1

1.1 Advantages of Following Standards .. 1
1.1.1 Example of Tools Using Standards ... 2

2.0 The Standards Hierarchy .. 2
2.1 Required Standards .. 2

2.1.1 Recommended Standards .. 2
3.0 Optional Methods ... 2
4.0 Significant Changes .. 3
5.0 File Type/Format .. 3
6.0 Construction of Data File Name ... 4

6.1 File Naming Conventions for Processed Data ... 4
6.1.1 File Name Length .. 5
6.1.2 Data Level ... 6
6.1.3 Best Estimate ... 7
6.1.4 File Duration ... 7

6.2 Guidelines for Original RAW File Name... 8
6.3 File Naming Conventions for RAW ARM Data .. 8
6.4 File Naming Conventions for TAR Bundles .. 9
6.5 File Naming Conventions for Field Campaign TAR Bundles ... 9
6.6 Other Data Formats .. 10
6.7 Guidelines to Name Quick-Look Plot Filenames ... 10
6.8 Case Sensitive File Naming ... 11

7.0 Guideline for netCDF File Structure .. 11
7.1 Dimensions ... 11

7.1.1 Time Dimension .. 11
7.2 Time ... 11

7.2.1 base_time and time_offset Fields .. 12
7.2.2 Time Field ... 12
7.2.3 Time Bin Boundary ... 13
7.2.4 Coordinate Dimensions ... 14
7.2.5 Coordinate Bin Dimension .. 14
7.2.6 Additional Dimension ... 15
7.2.7 Cell Method Attribute ... 16

7.3 Location Fields ... 17

iv

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

7.4 Guidelines for Construction of Field Names .. 17
7.4.1 Field Names Hierarchy .. 18
7.4.2 Field Name Descriptors ... 19

7.5 State Indicator Field ... 21
7.5.1 Exclusive States ... 21
7.5.2 Inclusive States .. 22

7.6 Field Attributes ... 22
7.6.1 Required Field Attributes .. 22
7.6.2 Required with Conditions .. 23
7.6.3 missing_value vs. _FillValue Discussion .. 23

7.7 Standard_Name Attribute ... 23
7.8 ARM Standard Field Attribute Names ... 24

7.8.1 Other Possible Attributes (Not All Inclusive) ... 24
7.9 Sensor Height ... 24
7.10 Attribute Datatype .. 25

8.0 Global Attributes .. 25
8.1 Required and Recommended Global Attributes ... 25

9.0 Quality-Control Parallel Fields ... 29
9.1 Bit-Packed Numbering Discussion .. 29
9.2 Standard Bit-Packed Quality-Control Fields .. 29

9.2.1 Field-Level Bit Description ... 30
9.2.2 Standard ARM QC .. 31
9.2.3 Unused ARM QC Bit .. 31
9.2.4 Reporting Test Parameters in Description ... 31
9.2.5 QC Test Performed Indicator .. 32
9.2.6 Bit-Packed Global Attribute Declaration for Quality Control .. 33
9.2.7 valid_min/valid_max vs. qc_min/qc_max Attribute Discussion 34
9.2.8 Multiple Field Summarized Quality Control ... 34
9.2.9 Dimensionally Summarized Quality Control .. 35

9.3 Integer Quality-Control Fields ... 36
9.3.1 Integer Global Attribute Declaration for Quality Control ... 37

9.4 Ancillary Quality-Control Fields ... 38
10.0 Guidelines to Describe Source ... 38

10.1 Source Field Attribute .. 38
10.2 Source Field ... 38
10.3 Source Bit-Packed Method ... 39

11.0 Process for Evaluating Exceptions ... 40
11.1 Identifying Exceptions ... 40

11.1.1 Exception Process ... 41

v

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

11.2 Size and Members of Exception Committee .. 41
11.2.1 Review and Approval of Exceptions ... 41
11.2.2 Documentation of Exceptions ... 41
11.2.3 Exception Process Typical Workflow ... 41
11.2.4 Examples of Exceptions .. 42

Appendix A Definitions .. A.1
Appendix B Bin Values Changing Each Time Step ..B.1
Appendix C ARM udunits Compliant Unit Descriptors ..C.1
Appendix D ARM netCDF Data File Example .. D.1

Tables

1. Optional field attribute examples. ... 30
2. Base units. ..C.1
3. Derived units, first order ..C.2
4. Commonly used derived units..C.2
5. Odd and ends..C.3
6. Prefixes ...C.4

vi

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Standards Committee

The 2013 Atmospheric Radiation Measurement (ARM) Standards Committee prepared this
document. Current committee members and their affiliations are identified below:

Ken Kehoe (OU) Chair Mike Jensen (BNL)

Sherman Beus (PNNL) Raymond McCord (ORNL)

Alice Cialella (BNL) Renata McCoy (LLNL)

Scott Collis (ANL) Sean Moore (ATK)

Brian Ermold (PNNL) Justin Monroe (OU)

Robin Perez (PNNL) Brad Perkins (LANL)

Stefanie Shamblin (ORNL) Tim Shippert (PNNL)

Chitra Sivaraman (PNNL)

ANL = Argonne National Laboratory ATK = Alliant Techsystems Inc.

BNL = Brookhaven National Laboratory LANL = Los Alamos National Laboratory

LLNL = Lawrence Livermore National Laboratory ORNL = Oak Ridge National Laboratory

OU = University of Oklahoma PNNL = Pacific Northwest National Laboratory

vii

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

1.0 Introduction

The Atmospheric Radiation Measurement (ARM) Climate Research Facility performs routine in situ and
remote-sensing observations to provide a detailed and accurate description of the Earth atmosphere in
diverse climate regimes. The result is a diverse data sets containing observational and derived data,
currently accumulating at a rate of 30 TB of data and 150,000 different files per month
(http://www.archive.arm.gov/stats/storage2.html). Continuing the current processing while scaling this to
even larger sizes is extremely important to the ARM Facility and requires consistent metadata and data
standards. The standards described in this document will enable development of automated analysis and
discovery tools for the ever-growing volumes of data. It also will enable consistent analysis of the
multiyear data, allow for development of automated monitoring and data health status tools, and facilitate
development of future capabilities for delivering data on demand that can be tailored explicitly to user
needs. This analysis ability will only be possible if the data follows a minimum set of standards. This
document proposes a hierarchy that includes required and recommended standards.

All new data sets must adhere to required ARM Standards to be published in ARM archives, unless an
exception is granted. Historical data will be reprocessed to be compliant with the standards.

Where feasible, the standards listed in this document follow the Climate Forecast (CF) convention. Using
the CF standards will increase the usability of the data to the broader scientific community. A full
description of the CF convention can be found at http://cf-pcmdi.llnl.gov/documents/cf-conventions.

Benefits of adhering to these standards include:

• consistency across datastreams

• code reuse by using consistent formats

• simple and consistent software able to read all standardized netCDF files

• files (netCDF data files) that are both human and machine readable to the degree possible.

1.1 Advantages of Following Standards

Adhering to the standards defined in this document will allow automated utilities to function with
minimal updates. Overall, if data products meet a required set of standards, the software products used to
assess and/or display them can be developed much more efficiently. Adherence to the standards will lead
to better quality and more readily understandable netCDF files. The standards present a consistent “look
and feel” to data users who are familiar with ARM Standards.

As more products adhere to the standards, fewer exceptions must be added to data product software, such
as value-added products (VAP), when ingesting various input datastreams. For developers, encountering
fewer exceptions results in reduced chances to introduce software errors and quicker development time.
This lowers the costs for development, and unintended costs to the ARM Facility through reprocessing
tasks.

1

http://www.archive.arm.gov/stats/storage2.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

1.1.1 Example of Tools Using Standards

The ARM Facility has many individual software tools using the standards listed in this document.
Conforming to the standards enables the ARM Facility to function efficiently and accomplish
significantly more with fewer resources. Some examples of software tools dependent on adherence to the
standards include:

• DQ Explorer, DQ Inspector, NCVweb, and ARM*STAR at the Data Quality Office

• DSView, Ingest and VAP processing at the Data Management Facility

• Data Discovery, storage, custom data files at the ARM Data Archive

• Process Configuration Management and Metadata Management Tool at External Data Center

Links to these tools can be found at http://i.arm.gov.

2.0 The Standards Hierarchy

The standards are divided into two groups: (1) required standards and (2) recommended standards. Each
type of standard is described below.

2.1 Required Standards

Required standards must be met to be in compliance with the ARM standard. To reference a standards
version number, all required standards must be met (excluding Exception Committee approval). Unless
indicated, all standards listed are required. If the required standards are not met, data will not be published
in the ARM Data Archive unless an exception is granted.

A few required standards have conditions that must be met. The few cases are explicitly described in this
document. If the conditions are not met, the standard is not considered to be required. (i.e., missing_value
attribute)

2.1.1 Recommended Standards

Recommended standards are encouraged standards that increase the usability of the final data products by
both the ARM infrastructure and ARM data users. Following recommended standards enables automatic
status monitoring, automated extraction tools, and consistency of the data. The recommended standards
will be labeled as recommended in this document. Not following these standards may result in the data set
not being monitored for health status and not discoverable through the ARM operational tools.

3.0 Optional Methods

Some netCDF fields (i.e., quality control (QC), source or state indicator field) or metadata (i.e.,
cell_methods, standard_name) are optional and up to the discretion of the Developer/Mentor/Translator

2

http://i.arm.gov/

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

to implement. All instances of optional methods are labeled as optional in this document. If an optional
field or metadata is used, the required and recommended standards listed in those sections apply.

4.0 Significant Changes

This section lists changes to the existing de facto standards that may require the most attention.

• changing from .cdf to .nc file extension

• require both base_time & time_offset, and time in CF convention methods

• additional time cell boundaries for time-averaged data

• additional coordinate cell boundaries for coordinate-averaged data

• removal of qc_time as a required field

• explicit criteria for file name data level

• reduced use of abbreviations in field names

• explicit method for state indicator fields

• addition of datastream and platform_id global attributes

• missing_value field attribute required with conditions

• standard_name field attribute required if a primary field and the standard name exists in the CF table

• explicit method for integer QC fields

• explicit method for source fields.

5.0 File Type/Format

RAW instrument data is typically written in ASCII, binary or netCDF data formats. Most formats are
decided by the instrument vendor, not by the ARM Facility. If an option is available, use best judgment
when choosing a vendor data file format.

Version 3/classic format of netCDF is the ARM Facility’s choice for the final data format because it
supports efficient data storage and reliable/robust documentation of the data structure. More information
about netCDF is available at http://www.unidata.ucar.edu/packages/netcdf/faq.html.

High volume data may be treated as a special case and allowed to use netCDF version 4 to take advantage
of the compression option. Use of netCDF 4 to take advantage of the compression abilities requires a
significant reduction in file size (a minimal reduction of 50% data volume) or increase in usability of the
data. Use of netCDF 4 will be granted through the Exception Committee process.

ASCII format, binary data format, and hierarchical data format (HDF) are used for some External data
products. When using ASCII or binary data formats, a description of the file structure and its proposed

3

http://www.unidata.ucar.edu/packages/netcdf/faq.html

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

documentation must be easily available to the user. HDF is the standard for most satellite data. More
information about HDF is available at http://www.hdfgroup.org and http://www.hdfeos.org.

6.0 Construction of Data File Name

6.1 File Naming Conventions for Processed Data

ARM netCDF files are named according to the following naming convention. All characters are
lowercase except for facility indicator. Only “a-z,” “A-Z,” “0-9,” and “.” characters are allowed.

(sss)(inst)(qualifier)(temporal)(Fn).(dl).(yyyymmdd).(hhmmss).nc

where:

(sss) is the three-letter ARM site identifier (e.g., sgp, twp, nsa, pgh, nim, ena, mag). The identifier is
defined by a geographic reference or the International Air Transport Association (IATA) airport code to
indicate approximate location. Fixed sites are named after a geographic reference, while ARM Mobile
Facility deployments use the IATA code. Exceptions may be made for moving deployments such as ship
and aircraft, or for large geographic areas for satellite data.

(inst) is the ARM instrument abbreviation (e.g., mwr, met, ecor, mpl), or the name of an ARM VAP. The
abbreviation is typically an acronym describing the instrument suite or VAP, and may describe the
method for retrieving the measured or derived quantity. To avoid confusion with the data temporal
resolution descriptor or other optional descriptors following the instrument abbreviation, the instrument
abbreviation must not end with a number.

(qualifier) is an optional qualifier that distinguishes these data from other data sets produced by the same
instrument or VAP (e.g., avg, 1long). The optional qualifier may have one or more additional qualifiers
describing a specific algorithm method or instrument specifics. This qualifier is used to describe monthly,
yearly, or annual files.

(temporal) is an optional description of data temporal resolution (e.g., 30m, 1h, 5s, 200ms, 14d, etc.). All
temporal resolution descriptors require a unit identifier. Accepted abbreviations are ns for nanosecond, us
for microsecond, ms for millisecond, s for second, m for minute, h for hour, d for day, mo for month, and
yr for year. It is recommended that the primary datastream for use by the end user not have a data
integration period in the name. Time integration periods are converted to the lowest unit description;
when possible, default to minutes.

Example: 60 seconds is labeled as “1m”, 60 minutes is labeled as “1h”.

(Fn) is the ARM facility designation. A facility is designated with a capital letter followed by one or two
numbers not padded with zeros (e.g., S1, C1, E13, B4, M1, I4). Extended facilities around a central
facility at the remote sites (excluding Southern Great Plains) indicate the correlation to the central facility
by matching the first of the two required numerical characters. For example, central facility TWP-C2 is
related to extended facilities E20, E21, E22, while TWP-C1 is related to E10, E11, E12. External data
products that cover a large locale use the facility designation of X1, while data products that are specific

4

http://www.hdfeos.org/

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

to an ARM facility follow the extended facility two numeral character naming convention. For example,
external data associated specifically with the TWP-C1 facility would be named TWP-X11, TWP-X12,
etc. Character coding designations are B for boundary, C for central, E for extended, I for intermediate, M
for mobile, S for supplemental, and X for external data site.

Notes:

• S0<#> has been used to indicate a supplemental facility co-located with the main facility. The
continuation of this convention is not recommended.

• Instances of a co-located deployment of the MAOS with the NOAA AOS will result in the MAOS
using S1 for the facility indicator unless S1 is used to describe a different location than the location of
the MAOS.

• Supplemental facility designations (S<#>) are used only for mobile facility deployments, co-located
facility indicators, or intensive operational period data sets.

(dl) data level is the two-character descriptor consisting of one lower case letter followed by one number,
except for the RAW data level for which the descriptor will consist of two numbers (e.g., 00, a0, b1, c1,
c2). See the Data Level section for further explanation.

(yyyymmdd) is the UTC (Coordinated Universal Time) date in year, month, day-of-month format
consisting of exactly eight characters indicating the start date of the first data point in the file. Single digit
month and day values are padded with a “0.” For example, February 4, 2012 is expressed as “20120204.”

(hhmmss) is the UTC time in hour, minute, second format consisting of exactly six characters indicating
the start time of the first data point in the file. Single digit values are padded with a “0.” Sub-second times
are truncated to the integer of the seconds value. For example, 5:00:19.57 UTC is expressed as “050019.”
The time sample may not exceed 23:59:59. Numbers of hours greater than or equal to 24, or numbers of
minutes or seconds greater than 60 will cause problems with time conversion programs.

nc is the netCDF file extension. The CF convention file extension for netCDF files was changed from cdf
to nc in 1994 to prevent conflicts with the NASA CDF file extension, or with “Channel Definition
Format” files. A number of third-party utilities require the nc extension or build the tools expecting a nc
file extension (i.e., Panoply, IDV, ncBrowse). For backwards compatibility ARM will continue to allow
the use of cdf file extension for historical data. As data is reprocessed, the file name extension will be
updated to nc if feasible.

6.1.1 File Name Length

The TOTAL length of a filename sent to the Archive MUST be 60 characters or less to meet the
requirements of the current ARM Data Archive database system. The Archive uses a 64-character file
name field in the database, and appends a version level to the end of the file name. (Archive version
descriptor examples: “.v1,” “.v13”). Four characters are reserved for the period, “v,” and one or two-
character numbers describe the version of the file received at the ARM Data Archive.

In addition to full file name length, the datastream, (sss)(inst)(qualifier)(temporal)(Fn).(dl), MUST be 33
characters or fewer to comply with ARM Data Archive database.

5

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

The final file name length requirement includes limiting the instrument description part of a filename,
(inst)(qualifier)(temporal), to 24 characters or fewer to comply with the ARM Data Archive database.

6.1.2 Data Level

Data levels are based on the “level of processing” with the lowest level of data being designated as RAW
or “00” data. Each subsequent data level has minimum requirements, and a data level is not increased
until ALL the requirements of that level as well as the requirements of all data levels below that level
have been met. A data level will consist of one lowercase letter followed by one number (except for RAW
data).

00: raw data – primary raw data stream collected directly from instrument

01 to 99: raw data – redundant data stream, sneakernet data (transfer of data files by physically moving
removable media), or external data that may consist of higher-order products, but require further
processing to conform to ARM Standards.

a0: raw data converted to netCDF – data level typically used as input to higher-level data products. Not
intended for distribution to data users.

a1: calibration factors applied and converted to geophysical units

a2 to a9: further processing on a1 level data that does not merit b level classification. This level also
applies to external satellite files that are converted from TDF to HDF format. For example, the Instrument
Mentor reviewing the data and replacing bad data with a missing value, or additional calibration factors
added to data after data has been processed as a1 data stream. A description of the further process must be
described in the netCDF header, Instrument Handbook, or technical paper available to data users.

b0: intermediate quality controlled datastream – this data level is always used as input to higher-level data
products. Not intended for distribution to data users.

b1: QC checks applied to at least one measurement and stored in an accompanying QC field meeting QC
standards listed in this document. The addition of qc_time does not force the datastream to b level.
External data may contain additional QC flags specified by the external data source.

b2 to b9: further processing on b1 level data that does not merit c-level classification. For example,
additional quality-control test or different parameters used in processing. A description of the further
process must be described in the netCDF header, Instrument Handbook, or technical paper available to
data users.

c0: intermediate VAP; data level always used as input to a higher-level VAP. Not intended for
distribution to data users.

c1: derived or calculated VAP using one or more measured or modeled data as input. For external data,
.c1 level data may contain gridded model data, satellite data, or other data that have had algorithms
applied by an external source.

6

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

c2 to c9: further processing applied to a c1 level data stream using the same temporal resolution. Possible
reasons for increasing levels include better calibration, better coefficients for algorithms, or reprocessing
using different averaging resolution in algorithm.

s1: summary file consisting of a subset of the parent b or c-level file with simplified QC and “Bad” values
set to missing value indicator. The s-level number must match the b- or c-level file used as input.

s2 to s9: summary file for higher c-level datastreams.

Notes:

• Not every data level needs to be produced for each instrument data set. Example: if conversion from
RAW to netCDF, calibration, and engineering units occurs in a single processing step during
conversion from RAW to netCDF format, then an a0 data product would not be produced.

• QC checks applied to a data field by the instrument (not by ingest) do not require the data level to be
increased from a1 level to b1, unless the netCDF data file provides accompanying QC fields
satisfying b level requirements.

• Data level c0 to c9 is restricted to data derived or calculated through value-added processing. Lower-
level datastreams will be kept in the Archive if useful for evaluating an instrument or cross checking
another datastream. If the lower-level data does not need to be kept it will be removed from the ARM
Data Archive.

6.1.3 Best Estimate

The use of “be” in a file name indicates the datastream is a Best Estimate. This designation indicates an
official decree from the ARM Facility that the values used are ARM’s best attempt at representing the
scientific quantity. Use of the Best Estimate designation for a datastream requires approval from ARM
Facility leaders through and Engineering Change Request.

6.1.4 File Duration

To control the number of small files and to facilitate the use of ARM data, the file period for datastreams
and typical value-added processes span 24 hours over a UTC day. Datastreams with solar data or
statistical products may choose to use a different time period when appropriate.

Very large data sets may be routinely split into two or more netCDF files per day to increase usability or
stay within single file size limits. The ARM Data Archive suggests file sizes under 20GB, but can manage
file sizes up to 8 TB. Be reasonable when choosing file size.

Daily data files are allowed to split when metadata information changes (example: instrument serial
number or calibration change). ARM standard processing expects a file to split when a metadata change is
detected.

7

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

6.2 Guidelines for Original RAW File Name

The RAW filename created by the instrument is often decided by the instrument vendor. Requesting the
vendor to change the filename format is typically not possible and is not a requirement. After the data
system retrieves the RAW instrument file, the data system will rename the file to the appropriate ARM
Standards (i.e., the 00 level data file name).

When possible, the original file name produced on the instrument or instrument data system should
contain adequate information to determine the origin of the file including:

• unique site and facility indicator

• yyyymmdd (year, month, day-of-month) or yyyyjjj (year, day-of-year)

• hhmmss (hour, minute, second), hhmm (hour, minute), or sequence number if more than one raw file
per day

• indication of instrument type or vendor.

Often it is not possible to include all this information. In those instances, it is important to include
adequate header information inside the file to permit the user to determine the source/original data and
provide a reference date (including year) and time.

6.3 File Naming Conventions for RAW ARM Data

RAW ARM data files to be ingested are named according to the following naming convention:

(sss)(inst)(Fn).00.(yyyymmdd).(hhmmss).raw.(xxxx.zzz)

Where:

00 is the data level. RAW data is the first data file and shall be labeled with the lowest possible level.

raw is the indicator that the file contains RAW data.

(xxxx.zzz) is the original raw data file name produced on the instrument.

Example raw data file name: nsamwrC1.00.20021109.140000.raw.20_20021109_140000.dat

This file is from the North Slope of Alaska Barrow site. It contains raw microwave radiometer data for
November 9, 2002, for the hour beginning 14:00:00 UTC.

RAW instrument data are recommended to be collected hourly resulting in 24 RAW data files per day.
These files are bundled into daily Tape ARchive (TAR) files before archival.

Underscore and dash are not allowed in the file name left of and including the

six-digit time. (Underscores can be treated as wildcard characters in some databases.) Because of the
method of implementation, underscores are allowed to the right of the six-digit time in the file name. If
possible, do not use underscores in the file name.

8

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Occasionally, data files may become corrupt or contain bad data that causes the ingest process to fail. To
allow the ingest to continue processing, bad data files are moved to a sub-directory named “bad” with the
offending raw file renamed with “bad” replacing the “raw” portion of the name. The TAR file containing
the “bad” data file is not renamed.

6.4 File Naming Conventions for TAR Bundles

TAR bundles are named according to the following naming convention:

(sss)(inst)(Fn).00.(yyyymmdd).(hhmmss).raw.(zzz).tar

Where:

(yyyymmdd) is the start date from the first data file name within the TAR bundle.

(hhmmss) is the start time from the first data file name within the TAR bundle.

(zzz) is the optional extension from the original raw data file name, usually the format of the file or an
instrument serial number.

tar is the TAR bundle file extension.

It is recommended to create one TAR file for each date.

The example raw file from above is archived in a TAR bundle named
nsamwrC1.00.20021109.000000.raw.dat.tar

Some RAW data files are not ingested, but are collected and placed in a TAR file. The TAR file name
must follow the standards, but the non-ingested data file within the TAR file may have file names not
matching the standards. It is recommended that the data files within the TAR file contain enough
information to describe the data including location and time.

6.5 File Naming Conventions for Field Campaign TAR Bundles

Field Campaign TAR bundles are named according to the following naming convention:

(sss)(yyyy)(FC)X1.i0.(yyyymmdd).000000.tar.(pi-inst).(ident)(<#>of<#>)

Where:

(sss) is the three-letter code for the location of the field campaign

(yyyy) is the year that the field campaign took place or began.

(FC) is the abbreviated name of the field campaign.

X1.i0 indicates external field campaign principal investigator (PI) data set.

9

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

(yyyymmdd) is the date the TAR file was sent to the Archive by the field campaign administrator.

000000 is the hhmmss field (the hhmmss resolution is not currently is use).

tar is the TAR bundle file extension.

(pi-inst) is the name of the PI and the abbreviation for the instrument producing the data.

(ident) is an optional additional identifier if more distinction in the pi-inst pair is needed.

(<#>of<#>) is an optional identifier for the total number of packets in the PI data set (e.g., “1of3,” “2of3,”
“3of3”).

One TAR file is created for each PI data set, unless the file is over 2 GB. If the TAR file is over 2 GB,
then the TAR file must be split into fewer than 2 GB units and an extension <#>of<#> is included.

The example raw file from above will be archived in a TAR bundle named
nsa2004mpaceX1.i0.20060125.000000.tar.tooman-dfcvis.c2.1of4.

The length of the TAR file name must be 60 characters or fewer.

6.6 Other Data Formats

ARM data may be stored in a format other than netCDF for special data sets. The basic naming
convention for processed files does not differ, but the final extension changes accordingly:

asc: ASCII data format

hdf: Hierarchical Data Format data format (limited to satellite data)

png: Portable Network Graphics (PNG) data format. Recommended for drawings, sketches, and data
plots.

jpg: Joint Photographic Expert Group (JPEG) data format. Recommended for photographs.

mpg: Moving Picture Expert Group (MPEG) format. Recommended for movie format.

pdf: For formatted documents and graphics-rich documents portable document format (PDF) file type is
recommended

Other data formats (e.g., gifs) may also exist, but are not recommended for future development.

6.7 Guidelines to Name Quick-Look Plot Filenames

The standard convention for VAP quick-look plot filenames created at the Data Management Facility is
as follows.

datastream.level.date.time.description.extension

10

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Note: The delimiter is a “.” (period) except within the description when it is an “_” (underscore). An
underscore is currently acceptable to the right of the datastream, (sss)(inst)(qualifier)(temporal)(Fn).(dl),
part of the name. Using underscores in the datastream section may cause problems with databases that use
underscores as wildcard characters.

Example:

sgp30ebbrE9.b1.20100101.000000.latent_heat_flux.png

6.8 Case Sensitive File Naming

Data file names are case sensitive. For example, example.DAT and example.dat may be interpreted as two
different names by ingest and bundling routines. Instruments should be consistent in the way the original
file names are assigned, including the case used.

7.0 Guideline for netCDF File Structure

7.1 Dimensions

7.1.1 Time Dimension

The time dimension is defined as “unlimited” and is the first dimension of a variable using the time
dimension. netCDF3 requires the unlimited dimension to be the first dimension in multi-dimensional
arrays, thereby allowing proper concatenation of data along the unlimited dimension.

The recommended order of the dimension definitions is to start with time and then the coordinate
dimensions.

It is recommended that the number of dimensions used in a single file be as few as possible. Fields
consisting of a single data value are defined as scalars unless the Data Object Design (DOD) is used with
other instances where multiple values may exist.

7.2 Time

Time in processed data files must be increasing and may not repeat. The time variable in any file except
RAW cannot have a missing value or Not a Number (NaN) indicator. Files failing these requirements will
be sent to the Instrument Mentor or VAP Translator for review.

ARM uses the Gregorian calendar in processed data files. Other calendars are allowed with the addition
of an attribute describing the CF calendar name, although it is not recommended to deviate from the
Gregorian calendar. The calendar field attribute is optional if the Gregorian calendar is used. Note, the
use of a Julian calendar vs. a Gregorian calendar may introduce slight differences because the Gregorian
calendar defines one year as 365.242198781 days vs. 365.25 days in a Julian calendar.

11

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Time is defined through the use of both a time field and base_time and time_offset fields. Historically, the
ARM Facility has used the base_time and time_offset method. For consistency with historical data and to
accommodate the emerging CF standard, both time formats must be declared in the processed netCDF
file. Both time formats work by indicating the number of time steps from an initial time. The units of
time, base_time, and time_offset must be the same and the values of time and time_offset must be the
same. This will decrease the likelihood of a user interpreting the time values incorrectly.

It is recommended to start the time at UTC midnight and indicate this format in the long_name. Starting
time at midnight allows for easy interpolation of the values (i.e., dividing the time field by 3600 to
convert from seconds to hours).

7.2.1 base_time and time_offset Fields

Time in ARM netCDF files is indicated in UTC, and is represented as “seconds since January 1, 1970
00:00:00,” also known as epoch time. For example, an epoch time of 1 means “Thursday January 1, 1970
00:00:01 UTC;” an epoch time of 992794875 is “Sunday June 17, 2001 16:21:15 UTC.” The default time
zone is UTC, but a different time zone may be defined using a time zone offset from UTC.

Time is indicated with the combination of two fields (base_time, time_offset) where the result is number
of seconds since epoch time. base_time contains a single scalar value stored as a long integer, and
time_offset contains a time-series of values stored as double precision floating point numbers, one for
each time-step in the file. The epoch time for sample index i is given by the value base_time +
time_offset[i]. base_time + time_offset[0] is the time corresponding to the time stamp in the file name.
This method will allow representing time steps down to 1 microsecond within a 1-year time interval.

The linking of base_time and time_offset is indicated with the ancillary_variables field attribute for
time_offset set to “base_time” and base_time set to “time_offset.”

The string attribute of base_time is set to the string description of the base_time value (i.e., “17-Sep-
2012,23:07:00 GMT”).

7.2.2 Time Field

The time field follows CF convention, and its recommended definition is “seconds since,” which is a
National Center for Atmospheric Research udunits defined time. The default time zone is UTC, but a
different time zone may be defined using a time zone offset from UTC. time is a “coordinate variable,” a
field with the same name as the time dimension. This enables generic netCDF tools to work with ARM
data. (See, for example, the Cooperative Ocean/Atmosphere Research Data Service netCDF conventions
at href=“http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html.) Conventions other than “seconds
since” are allowed but are not recommended. The use of “months since” and “years since” are not
recommended unless explicitly defined.

Example:

dimensions:
 time = UNLIMITED ; // (1440 currently)
variables:

12

http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

 int base_time ;
 base_time:string = “18-Sep-2012,00:00:00 GMT” ;
 base_time:long_name = “Base time in Epoch” ;
 base_time:units = “seconds since 1970-1-1 0:00:00 0:00” ;
 base_time:ancillary_variables = “time_offset” ;
 double time_offset (time) ;
 time_offset:long_name = “Time offset from base_time” ;
 time_offset:units = “seconds since 2012-09-18 00:00:00 0:00” ;
 time_offset:ancillary_variables = “base_time” ;
 time:calendar = “gregorian” ; // Optional attribute when set to gregorian
 double time (time) ;
 time:long_name = “Time offset from midnight” ;
 time:units = “seconds since 2012-09-18 00:00:00 0:00” ;
 time:calendar = “gregorian” ; // Optional attribute when set to gregorian

7.2.3 Time Bin Boundary

Most data values are reported as an average of values over a predefined number of samples. Indicating the
bin boundaries and the location of the reported time value within the bin is critical to properly understand
the reported data. For all non-instantaneous data, the values of each averaging time bin are required. A
bounds field attribute indicates the corresponding two-dimensional field dimensioned by time and a
bounds dimension containing the bin boundary values. CF convention does not require a long_name and
units attribute for the bound field, but including the two attributes is recommended.

A new dimension set to 2 is added to store the start and end time values. This dimension does not require
a coordinate field.

Example:

dimensions:
 time = UNLIMITED ; // (1440 currently)
 bound = 2 ;
variables:
 double time (time) ;
 time:long_name = “Time offset from midnight” ;
 time:units = “seconds since 2013-01-25 00:00:00 0:00” ;
 time:bounds = “time_bounds”;
 double time_bounds (time, bound) ;
 time_bounds:long_name = “Time cell bounds” ; // Optional
 time_bounds:units = “seconds since 2013-01-25 00:00:00 0:00” ; // Optional, but if provided

must match the time:units string
 bound_offsets = -30., 30. ; // Optional. Only provide if all periods are the same offsets

The time_bounds field contains the starting and ending time values for each time bin. If the units attribute
is omitted, the values are offset from the time:units time. The individual time value indicates where, from
within the bin, time is reported. The long_name and units attributes are not required for time_bounds, and
the field may not have missing values.

13

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

The optional time_bounds:bound_offsets attribute declares the width of each averaging period. Setting the
attribute requires that every averaging period is expected to be consistent. If the averaging period is not
consistent, the attribute is omitted.

For example, if time is defined as the number of seconds since January 25, 2013 00:00:00 UTC:

 time = [0., 60., 120., 180., 240., …]
 time_bounds = [[-30., 30., 90., 150., 210., …]
 [30., 90., 150., 210., 270., …]]

In this example, the first time sample is reported at 0 second added to January 25, 2013 00:00:00 UTC.
The first time sample is bounded by the start time greater than or equal to January 24, 2013 23:59:30
UTC (subtract 30 seconds), and end time less than January 25, 2013 00:00:30 UTC (add 30 seconds). In
this example, the time value relative to the start time and end time indicates that the time values are
reported at the center of the bin. The averaging period is consistent so the optional attribute bound_offsets
equals [-30, 30].

7.2.4 Coordinate Dimensions

If a coordinate dimension is used, then a variable with the same name as the dimension is added with a
long_name and units attribute. Examples of coordinate dimensions are bin, height, range, or depth. The
name of the dimension should clearly articulate the values. The use of singular names is recommended,
but not abbreviations. The long_name attribute should be as concise as possible in describing what the
values represent.

Example:

dimensions:
 time = UNLIMITED ; // (1440 currently)
 range = 1999 ;

variables:
 float range(range) ;
 range:long_name = “Distance from transceiver to center of corresponding bin” ;
 range:units = “km” ;

A coordinate variable may not have a missing_value, _FillValue, or NaN value, and must be
monotonically increasing or decreasing. Data files containing dimensions failing these regulations will be
sent to Instrument Mentor or Translator for review.

7.2.5 Coordinate Bin Dimension

Binned data is common in atmospheric data and needs sufficient metadata to describe the bin ranges.
Typically, binned data is evenly spaced and reported at the center of the bin value. To report the range of
binned values, ARM follows the CF conventions. The CF convention uses the bounds attribute to indicate
the corresponding variable indicating the start and end location of each bin with a two-dimensional array.
A long_name and units attribute are recommended, but not required.

14

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

If the bin size is consistent, the optional bound_offsets attribute describes the size of the bin. If the bin
size is not consistent, the bound_offsets attribute is omitted.

Example:

dimensions:
 time = UNLIMITED ; // (1440 currently)
 bin = 21
 bound = 2 ; // Use of “bound” as dimension name recommended
variables:
 float bin(bin)
 bin:long_name = “Center of droplet size bin”
 bin:units = “um”
 bin:bounds = “bin_bounds”
 float bin_bounds(bin, bound) ;
 bin_bounds:long_name = “Droplet size bin bounds;” // Optional
 bin_bounds:units = “um” ; // Optional
 bound_offsets = -5, 5 ; // Optional. Only provide if all periods are the same offsets
 float ccn_number_concentration(time, bin) ;
 ccn_number_concentration:long_name = “AOS Cloud Condensation Nuclei number

concentration”
 ccn_number_concentration:units = “count”
 ccn_number_concentration:missing_value = -9999.f
 ccn_number_concentration:cell_methods = “bin: sum;” // Optional

In this example, the bin variable contains values corresponding to each binned sample. The bin range is
contained in the bin_bounds variable with bin_bounds[i,0] containing the initial bound (values are greater
than or equal to) and bin_bounds[i,1] containing the final bound value (values are less than). The bin[i]
range is bounded by the two bin_bounds values, and its value indicates where within the bin the value is
being reported (i.e., beginning, middle, or end). Typically, the reported value is in the center of the bin.

The variable referred to in the bounds attribute (bin_bounds in this example) does not require a
long_name or units attribute.

This example also uses the optional cell_methods attribute to describe the method used. See Cell Method
Attribute or CF documentation for an explanation of this attribute.

An example of how to indicate changing bin values for each time-step is found in Appendix B.

7.2.6 Additional Dimension

Additional dimensions may be needed for string arrays, bounds, or other dimensions not intended to be
used as coordinate variables. The number of additional dimensions should be minimized and named in a
clear and concise way that describes their use. Some examples include: string array or coefficients for
equations.

15

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Example:

 dimensions:
 time = UNLIMITED ; // (1440 currently)
 string_length = 13 ;

 char status_string (time, string_length)
 status_string:long_name = “Warning, alarm, and internal status information”
 status_string:units = “unitless”
 status_string:comment = “The values reported by the instrument have the form FEDCBA987654

and contains Alarm (A), Warning (W), and internal status (S) information. Each character is a
hexadecimal representation of four bits, i.e., values between 0 and 9 are presented with
respective numbers and values 10, 11, 12, 13, 14, and 15 are presented with letters A, B, C, D, E,
and F, respectively.”ß

7.2.7 Cell Method Attribute

The optional cell_methods field attribute describes the source of data by indicating the method used to
collect it. This method is well defined by the CF convention and is extensionable to describing multi-
dimensional data sets. Additional description can be found at http://cf-pcmdi.llnl.gov/documents/cf-
conventions/1.6/ch07s03.html.

The addition of cell_methods to a data field describes how the data was derived to both human and
automated software enabling the data to be re-gridded or analyzed with generic tools.

The format includes the dimension name followed by the method in a “dimension_name: method” format
that allows different methods to be indicated for different dimensions.

Example:

Precipitation Measurements

• Average, maximum, statistics or point value

– temperature:cell_methods = “time: mean”

– temperature_max:cell_methods = “time: maximum”

– temperature_std:cell_methods = “time: standard_deviation”

– pressure:cell_methods = “time: point”

To indicate more complicated methods, additional information can be included in parentheses after the
method.

• Precipitation amount

– precipitation_rate:cell_methods = “time: sum (interval: 1 min)”

– precipitation_total:cell_methods = “time: sum (interval: 24 hr comment: summed over one UTC
calendar day)”

16

http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/ch07s03.html
http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.6/ch07s03.html

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

For multi-dimensional data, the order indicates the order of operation. In the following example, data are
averaged over the time dimension first, and then the median values are calculated for the height
dimension. The left-most operation is performed first.

• Averaged over time cells and then median over height cells

– temperature:cell_methods = “time: mean height: median.”

7.3 Location Fields

The instrument location is described using latitude, longitude, and altitude fields. The required unit of
latitude is degrees north, and the field name is lat. The required unit of longitude is degrees east, and the
field name is lon. The recommended unit of altitude is meters above mean sea level (MSL), and the
required field name is alt. The altitude measurement references the altitude of ground level to MSL. The
instrument height above ground level (AGL) is defined with the sensor_height attribute. See the Sensor
Height section for a full explanation. Use of standard_name attributes is recommended. The use of the
specific lat, lon, and alt field names is required to be consistent with historical data. The lat, lon, and alt
fields can be dimensioned by time for mobile platforms when needed.

Example:

 float lat ;
 lat:long_name = “North latitude“
 lat:units = “degree_N“
 lat:standard_name = “latitude“
 lat:valid_min = -90.f
 lat:valid_max = 90.f
float lon ;
 lon:long_name = “East longitude“
 lon:units = “degree_E“
 lon:standard_name = “longitude“
 lon:valid_min = -180.f
 lon:valid_max = 180.f
float alt ;
 alt:long_name = “Altitude above mean sea level“
 alt:units = “m“
 alt:standard_name = “altitude.”

7.4 Guidelines for Construction of Field Names

A field name should convey a basic understanding of the associated data. File space is not an issue, so
cryptic field names that typically are only understood by the person who chose the name should not be
used. ARM guidelines for choosing field names is provided below:

• First character must be a letter. In accordance with netCDF requirements, only letters, numbers, or
underscores are allowed. Upper case letters should be used sparingly.

• The field name is constructed by joining the names to the qualifiers using underscores (_).

17

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

• Field names should be concise. One has to be reasonable when picking field names.

• Abbreviations should be used except in cases in which their use is needed to avoid excessively long
field names, to follow previous conventions, or to provide clarity.

• To comply with ARM Data Archive database storage requirements, field name lengths must not
exceed 64 characters.

• Use of single-character names is not recommended.

• Common ARM field names that follow the program standards and promote clarity across datastreams
should be used. Review the pick list for common field names.

• The singular form of field names and dimensions are recommended (i.e., temperature not
temperatures)

• Greek letters are not allowed in netCDF3. Also, it is strongly recommended that the spelled forms of
Greek letters, formula symbols, or units be avoided.

It is important to be reasonable. Field names should be as concise as possible. For example, “temperature“
fully spelled out is recommended unless the full field name becomes unreasonably long. The field name
atmospheric_temperature is more descriptive of the measurement than temperature alone. A field labeled
temperature could describe air temperature, instrument temperature, derived temperature, etc. Name
hierarchy is used for field differentiation within the same file.

7.4.1 Field Names Hierarchy

If a conflict arises, then the following hierarchy is used.

1. [super prefix]; for example, qc, aqc, be, source

2. [prefix]; for example, interpolated, calibrated, instantaneous

3. [measurement]; for example, vapor_pressure, pressure, temperature

4. [subcategory]; for example, head, air, upwelling, shortwave, hemisphere

5. [medium]; for example, earth, satellite, sea, atmosphere

6. [height/depth]; for example, 10m, 2cm, 5km

7. [enumeration]; for example, e, w, n, s, a, b, 1, 2

8. [source name]; for example, smos, met,

9. [algorithm]; for example, fibonacci, wrf

10. [quantity]; for example, mean, standard deviation, maximum, summation.

Example of field names using hierarchy are listed below:

• qc_atmospheric_temperature_10m

• soil_temperature_swats

• wind_speed_5m

18

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

• relative_humidity

• qc_vapor_pressure_aeri_std

• rain_rate_attenuation_csapr

• source_absorption_coefficient_405nm

• qc_log_backscatter_xpol_std

The creation of a field name is related to the DOD for which it exists. A field name should convey the
information needed to distinguish the different fields, but does not need to completely describe the
corresponding data. For example, if a DOD contains data from a single instrument, there is no need to
indicate the instrument in the field name. Or, if every field in the file is an average, there is no need to
indicate average in the field name.

Related field names should repeat the same basic pattern for similar fields. This may result in using an
abbreviation for the basic field; in cases in which the field was not accompanied by other fields, the
abbreviation would not be used. For example, a datastream containing a measurement of aerosol optical
thickness with no accompanying fields would use aerosol_optical_thickness. If the measurement has
accompanying fields that extend the field name length, the field names then use the same base name; that
is, aot, aot_1020nm, aot_1020nm_francis_mean_10min, aot_1020nm_francis_mode_10min,
aot_1020nm_francis_mean_10min_std. This method informs the data user that the measurements are
correlated.

To help data users fully understand data, the use of abbreviations is not recommended. Abbreviations
should only be used when a field name becomes excessively long (i.e., 25 characters or more). When
abbreviations are used, it is recommended to use values listed in the next section.

7.4.2 Field Name Descriptors

Some abbreviations are common and will be used often. Commonly used ARM abbreviations are listed
below.

7.4.2.1 Prefix Qualifier
• inst = instantaneous

• fgp = fraction of good points

• be = best estimate

• qc = quality control

• aqc = ancillary QC or alternate QC

• inter = interpolated

7.4.2.2 Measurement Qualifier

• temp = temperature

19

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

• snr = signal to noise ratio

• lat = latitude

• lon = longitude

• alt = altitude

• navg = number of points averaged

• aod = aerosol optical depth

• aot = aerosol optical thickness (aod is preferred to aot)

• precip = precipitation

• rh = relative humidity

• wspd = wind speed

• wdir = wind direction.

7.4.2.3 Subcategory Qualifier
• low = lower

• high = higher

• up = upwelling or coming from below

• down = downwelling or coming from above

• long = longwave

• short = shortwave

• pol = polarization

• hemisp = hemispheric

• ref = reference

• ir = infrared

• vis = visible

• uv = ultraviolet

• coef = coefficient

• scat = scattering

• aux = auxiliary

• rot = rotational

• copol = co-polarization

• xpol = cross-polarization

• depol = depolarization

20

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

• diff = delta or difference

• anc = ancillary.

7.4.2.4 Quantity Qualifier
• std = standard deviation

• mean = arithmetic mean

• avg = arithmetic average (mean is preferable to average when the two are used interchangeably)

• mode = arithmetic mode

• med = arithmetic median

• var = variance

• sum = summation

• min = minimum

• max = maximum

• stderr = standard error

• log = logarithm

• ln = natural logarithm.

7.5 State Indicator Field

Some fields are intended to indicate a particular state of the instrument or a flag indicating some
correlating event (e.g., open or closed status of a hatch, detection of cloud, instrument cycling through a
series of calibrations, etc.). This field is typically metadata rather than data. The indication of a state
should follow CF convention formatting suggestions.

Two slightly different formatting methods are available with the choice of method depending on two
criteria: (1) are the flags are mutually exclusive or (2) is it possible for more than one state to exist
simultaneously.

7.5.1 Exclusive States

Exclusive-state data types are byte, short integer, or long integer. Definition of the possible states and
description of the states are described using the flag_values and flag_meanings field attributes defined by
the CF convention. Different flag meanings are strings separated by a single space character. Individual
flag meanings may not contain spaces and consists of words connected with underscores. A more detailed
description of the state may be made through an optional flag_<#>_description attribute.

int hatch_status (time) ;
 hatch_status:long_name = “Hatch status“ ;
 hatch_status:units = “unitless” ;

21

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

 hatch_status:missing_value = -9999 ;
 hatch_status:flag_values = 0, 1, 2 ; // Array of values
 hatch_status:flag_meanings = “hatch_open hatch_closed in_transition“ ;
 hatch_status:flag_0_description = “Hatch is open” ; // Optional
 hatch_status:flag_1_description = “Hatch is closed” ; // Optional
 hatch_status:flag_2_description = “Hatch is in transitional state” ; // Optional

7.5.2 Inclusive States

Inclusive-state data types are byte, short integer, or long integer. Definition of the possible states and
description of the states are described using the flag_masks and flag_meanings field attributes defined by
the CF convention. The existence of the flag_masks attribute indicates bit-packed values. The flag_masks
attribute declares the bit mask values to repeatedly use with a bit-wise AND operator to search for
matching enumerated values. A more detailed description of the state may be made through optional
bit_<#>_description attributes.

int sensor_status(time)
 sensor_status:long_name = “Sensor Status“
 sensor_status:missing_value = -9999
 sensor_status:flag_masks = 1, 2, 4, 8, 16 ; // Array of values
 sensor_status:flag_meanings = “low_battery hardware_fault offline_mode calibration_mode

maintenance_mode”
 sensor_status:bit_1_description = “Low battery”
 sensor_status:bit_2_description = “Hardware fault”
 sensor_status:bit_3_description = “Offline mode”
 sensor_status:bit_4_description = “Instrument performing calibration”
 sensor_status:bit_5_description = “Instrument in maintenance mode”

To detect which bits have been set, the bit-wise AND the variable values with each flag_mask element to
search for matching values is done repeatedly. When a result is equal to the corresponding flag_masks
element, that condition is true. For example, if the data value is 6, its binary representation is 00000110,
so the second and third bits are set. Recursively AND’ing each flag_masks value ([1, 2, 4, 8, 16]) with 6
results in [0, 2, 4, 0, 0] indicates only the second and third flags have been set; hardware_fault and
offline_mode.

7.6 Field Attributes

In general, the field attribute names are lowercase. Words are separated by an underscore. A single
lengthy comment attribute is preferred to multiple comment attributes (i.e., use comment or
comment_on_noise and comment_on_resolution instead of comment_<#>).

7.6.1 Required Field Attributes
• long_name: The long_name must be unique in regards to the other fields in the same netCDF file. Be

as clear and concise as possible. (Think about displaying this value on a plot presented at conference

22

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

as guideline.) Long names may not change without a DOD change. The first letter of a long_name
attribute value should be capitalized.

• units: See current list of approved unit descriptors in Appendix C. Must be CF convention udunits
compliant unless units descriptor currently is not listed.

7.6.2 Required with Conditions
• missing_value: If the data field uses a specific value to represent no data, a missing_value attribute

must be declared. There is no required value, but the recommended value is -9999. Do not include
with coordinate fields. The value must be a scalar and the same type as the corresponding data values.
The value must be outside the valid data range.

• standard_name: Required if a primary field and the standard name exists in the CF table.

7.6.3 missing_value vs. _FillValue Discussion

Historically, ARM has used the missing_value attribute to indicate the value used to indicate a missing
data value. However, the CF convention has transitioned from the use of missing_value and is suggesting
the use of the _FillValue attribute.

When a netCDF file is initially created, all data values are set to a standard fill value differentiated by data
type. During the write state, the values are changed to data values. Therefore, if a fill value exists in the
netCDF file, an error has occurred during the writing process.

A missing_value is the value used to indicate no data and has been introduced into the data by the writing
software. If the writing software uses a value different than the default netCDF fill value, there will be
two different values indicating non-data values. Therefore, a user may need to mask the missing_value,
and default fill value or _FillValue from the analysis.

7.7 Standard_Name Attribute

When possible, including a standard_name attribute that officially describes the data is strongly
recommended. Official string values for the standard_name attribute must be taken from the CF standard
name table. Creating new string values when a standard name does not exist is not recommended.

Link to table: http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standard-name-table/16/cf-standard-
name-table.html/

Example:

 float sea_level_pressure(time)

 sea_level_pressure:long_name = “Mean sea level pressure”
 sea_level_pressure:units = “hPa”
 sea_level_pressure:missing_value = -9999.f
 sea_level_pressure:standard_name = “air_pressure_at_sea_level.”

23

http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standard-name-table/16/cf-standard-name-table.html/
http://cf-pcmdi.llnl.gov/documents/cf-standard-names/standard-name-table/16/cf-standard-name-table.html/

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

7.8 ARM Standard Field Attribute Names
• valid_min

• valid_max

• valid_delta

• qc_min

• qc_max

• resolution

• comment

• comment_<#> (used for multiple distinct comments within a single field)

• precision

• accuracy

• uncertainty

• bit_<#>_description (for inclusive, bit-based flags)

• flag_<#>_description (for exclusive, state-based flags)

• bit_<#>_assessment (for inclusive, bit-based flags)

• flag_<#>_assessment (for exclusive, state-based flags)

7.8.1 Other Possible Attributes (Not All Inclusive)
• valid_range

• actual_wavelength

• corrections

• filter_wavelength

• FWHM (capital letters ok)

• sensor_height

• positive

• source

7.9 Sensor Height

If the declaration of the height of an instrument is desired, it is declared with an optional sensor_height
attribute. If all sensors are at the same height for a datastream, a global attribute may be used. If different
fields represent data at different heights, each field indicates the sensor height with the sensor_height
attribute. The presence of a sensor_height field attribute supersedes the global attribute. To determine the
height of the sensor above MSL, add sensor_height value to the alt field value.

24

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

The sensor_height attribute format is written in the following order: numerical value, CF udunit
compliant unit, “AGL,” all separated with a single space character. A negative value represents a
measurement taken below ground level. The value is the height of the sensor AGL.

Example:

 float wind_speed (time)

wind_speed:long_name = “Mean wind speed”
wind_speed:units = “m/s”
wind_speed;missing_value = -9999.f

 wind_speed:sensor_height = “10.5 m AGL”

7.10 Attribute Datatype

Field attributes set to a numeric value must match the same data type as defined for the corresponding
data field type.

Example:

 double wind_direction (time)

wind_speed:long_name = “Mean wind direction”
wind_speed:units = “degree”
wind_speed;missing_value = -9999. ; // Value is set as double precision instead of float
precision.

8.0 Global Attributes

All global attributes must have a value. If a value is not known at the time the file is created, the attribute
must clearly indicate that no known value exists. A standard value of “unknown” or -9999 set to the
proper data type is recommended (127 for type byte). Recommended attributes may be omitted if the
value is expected to be unknown. If required attributes must be written but a value is not expected to
exist, use “N/A.”

8.1 Required and Recommended Global Attributes

The order of global attributes is not a requirement, but the order listed in this document is recommended.

(Required global attributes are bold-underline)

command_line
 definition: Records command line used to run the ingest or VAP. If the command is run multiple

times to generate the individual file, list the command used to generate the initial file. If a single
command line is not used to generate the file, list the parameters that need to be set to create the
file.

Example: command_line = “langley -d 20130116 -p mfrsr -f sgp.E13”

25

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Formerly: Command_Line

command_line_comment
 Definition: Records the exceptional switches used in the command line.
 Example: command_line_comment = “-D updates the glue database file, -C will process only the data

below ~18km” ;

Conventions:
 Definition: The ARM convention version plus any conventions that the file conforms to. The ARM

convention indicator consists of “ARM” prepended to the standards document version number
joined with a hyphen (-). It is recommended to list ARM convention first in the list. This also is a
CF convention attribute.

Example: Conventions = “ARM-1.0 CF-1.6/Radial instrument_parameters radar_parameters
radar_calibration”

 Reference hyperlink: http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html#Attribute-
Conventions

process_version
Definition: Records the version of the ingest or VAP running on production.
Example: process_version = “ingest-met-4.10-0.el5”

 Formerly: software_version, Version

dod_version
Definition: Records version of the ARM DOD represented in this file.
Example: dod_version = “met-b1-2.0”

input_datastreams (VAP only, required with conditions)
 Definition: Records the itemized list of input datastreams available at runtime, process versions, and

filename date ranges. May be omitted if source attribute or source fields are used to describe
input datastreams. The datastream, version, and date range are separated by a space-colon-space
(“ : “). The individual datastream entries are separated by a space-semicolon-new line-space (“ ;\n
“). If multiple files exist for a single date but not all files are used, the individual ranges used
should be itemized as separate entries. The separator between dates in a given date-time ranges is
a hyphen (“yyyymmdd.hhmmss-yyyymmdd.hhmmss”). If the time period spans a single date, no
hyphen or end date should be included, and the date range is a single date-time
(“yyyymmdd.hhmmss”).

 Example: input_datastreams = “sgpsondewnpnC1.a1 : 6.1 : 20010208.232700-20010210.053400
;\n sgpmwrlosC1.b1 : 1.17 : 20010209.000000 ;\n sgp1twrmrC1.c1: Release_1_4 :
20010209.000000 ;\n sgparscl1clothC1.c1 : Release_2_9 : 20010209.000000”

input_source (ingest only)
 Definition: Records the name of the first RAW file with full path used to create daily netCDF file. If

more than one initial RAW file is used, list the file most useful to describe the ingest process.
 Example: input_source = “/data/collection/sgp/sgpswatsE10.00/1167508800.icm”

26

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html%23Attribute-Conventions
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html%23Attribute-Conventions

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

site_id
 Definition: Three-letter site designation
 Example: site = “sgp” ;
 Reference hyperlink: http://www.arm.gov/sites

platform_id
Definition: Instrument description including descriptive and temporal qualifiers
Example: “mfrsraod1mich”
Reference hyperlink: http://www.arm.gov/instruments

facility_id
Definition: Facility identifier
Example: facility_id = “E10” ;
Reference hyperlink: http://www.arm.gov/sites

data_level
Definition: Records data level
Example: data_level = “a1” ;
Formerly: proc_level
Reference hyperlink: http://www.arm.gov/data/docs/plan

location_description
 Definition: Description of location. The location description consists of the geographical region for

fixed locations or campaign names for mobile facility experiments followed by the closest city or
town. The geographical region or campaign name should be spelled out followed by the
appropriate acronym in parentheses.

Example 1: location_description=“Southern Great Plains (SGP), Lamont, Oklahoma”
Example 2: location_description=“Storm Peak Lab Cloud Property Validation Experiment

(STORMVEX), Christie Peak, Steamboat Springs, Colorado”

datastream
Definition: Datastream identifier. This will equal site_id + platform_id + facility_id+ “.” + data_level
Example: datastream = “sgpmfrsrE32.b1” ;

serial_number (ingest only, required with stipulation)
 Definition: Records serial number of instrument(s) used to collect data. Only required if the serial

number is expected to be known at runtime and is capable of changing. If multiple instruments
exist, specify the instrument; otherwise, use only a serial number. Individual serial number entries
are separated by a space-semicolon-new line-space (“ ;\n “). Instrument descriptors are separated
from the serial number with a colon-space (“: “). Type is recommended to be character.

Example 1: serial_number = “54321DT” ;

27

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Example 2: serial_number = “PIR1-DIR: 31312F3 ;\n PIR2-DIR: 30167F3 ;\n Diffuse PSP: 33271F3
;\n NIP: 31876E6 ;\n PSP-DS: 33703F3 ;\n SKY-IR: 1845” ;

 sampling_interval
 Definition: Records expected sampling interval. If the instrument sampling interval is different, it

should be noted in the instrument documentation. Format is interval time and compliant udunit
descriptor separated by a single space character.

Example: sampling_interval = “400 us”
Formerly: sample_int

sensor_height

 Definition: Records height of all sensors AGL. If multiple sensors at different heights exist, use a
field-level attribute. See Sensor Height section for format details. If sensor_height is defined at
field level for all relevant fields, a global attribute should not be defined.

Example: sensor_height = “10 m AGL”
Formerly: sensor_location

title
Definition: A succinct English language description of what is in the data set. The value would be

similar to a publication title.
Example: “Atmospheric Radiation Measurement (ARM) program Best Estimate cloud and radiation

measurements (ARMBECLDRAD)”

institution
Definition: Specifies where the original data was produced. If provided the value exactly matches the

value listed here. Exceptions will be allowed on a case-by-case basis.
Value: “United States Department of Energy - Atmospheric Radiation Measurement (ARM)

program”

description
Definition: Longer English language description of the data.
Example: “ARM Best Estimate hourly averaged QC controlled product, derived from ARM

observational Value-Added Product data: ARSCL, MWRRET, QCRAD, TSI, and satellite; see
source_* for the names of original files used in calculation of this product”

references
Definition: Published or web-based references that describe the data or methods used to produce it.
Example: “http://www.arm.gov/data/vaps/armbe/armbecldrad”

doi
Definition: Digital Object Identifier (DOI) number used to reference the data
Example: “10.5439/1039926” ; // Note this is a character string

doi_url
Definition: Full Uniform Resource Locator including DOI numbers
Example: “http://dx.doi.org/10.5439/1039926” ;

28

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

history
Definition: Records the user name, machine name, and the date in CF udunit or ISO 8601 format. If

the file is modified, the original value is retained, and new information is appended to the
attribute value with statements separated by a space-semicolon-new line-space (“ ;\n “). Strongly
recommended to be the last global attribute.

Example: history = “created by user dsmgr on machine ruby at 1-Jan-2007,2:43:02”

9.0 Quality-Control Parallel Fields

In addition to data fields, optional QC fields may be added to store relevant information about the quality
of a data sample. To encourage consistency among ARM data products, ingested data and VAP data files
will use the same QC standards. QC fields may use either an integer-value method for single-value test
results or a bit-packing method for multiple value test results. The decision of which method to use is left
to the Developer/Mentor/Translator.

9.1 Bit-Packed Numbering Discussion

QC fields may use a bit-packed technique to allow multiple pieces of information to be stored in one
numerical value. A more in-depth discussion of the technique can be found at
https://engineering.arm.gov/~shippert/ARM_bits.html (HTML) or
https://engineering.arm.gov/~shippert/ARM_bits.pdf (PDF).

9.2 Standard Bit-Packed Quality-Control Fields

The QC field has the same name as the data field with the addition of a “qc” before the field name and
separated by an underscore. Example: qc_temperature.

The flag_method = “bit” field attribute indicates the values are bit-packed.

QC fields are type integer (recommend 32-bit integer), unless raised to a higher precision to accommodate
more tests than the integer resolution can accommodate. If more than 32 tests are required, a method must
be proposed to the Exception Committee for review.

The QC field is linked to the data field with the declaration of an ancillary_variables data field attribute
with the value equal to the QC field name. If several ancillary variables are listed, a single space character
must separate each variable.

Required attribute for data field:

• ancillary_variables = the corresponding QC field name(s)

Required attributes for QC field:

• long_name = “Quality check results on field: <field’s long_name attribute value>“ ;

• units = “unitless” ;

29

https://engineering.arm.gov/%7Eshippert/ARM_bits.html%20(HTML)
https://engineering.arm.gov/%7Eshippert/ARM_bits.pdf%20(PDF)

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

• description = “This field contains bit-packed integer values, where each bit represents a QC test on
the data. Non-zero bits indicate the QC condition given in the description for those bits; a value of 0
(no bits set) indicates the data has not failed any QC tests.” ;

• flag_method = “bit” ;

Attributes describing the QC tests may be defined at either the field or global level. A mixture of field or
global level definitions is allowed in the same file, but definitions may only occur in one location for a
single field (global level or field level). Field-level definitions have priority over global definitions. If the
definition of QC bits are explained in the global attributes, a description attribute must point the user to
the global attributes for QC bit descriptions.

9.2.1 Field-Level Bit Description

The following field attributes are required to describe a QC test at the field level:

• bit_<#>_description = “<General description of QC test>“ ;

• bit_<#>_assessment = <state>

Only two options for bit_<#>_assessment <state> can be used: “Bad” or “Indeterminate.”

The following field attributes are optional:

• bit_descriptions

• comment

• bit_<#>_comment

Each <#> indicates the bit number. Examples are shown in Table 1.

Table 1. Optional field attribute examples.

Bit Field Attribute Binary Hex Power Bit-Packed Integer

1 bit_1_assessment 00000001 0x01 2^0 1

2 bit_2_assessment 00000010 0x02 2^1 2

3 bit_3_assessment 00000100 0x04 2^2 4

4 bit_4_assessment 00001000 0x08 2^3 8

5 bit_5_assessment 00010000 0x10 2^4 16

30

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

9.2.2 Standard ARM QC

Standard ARM QC is defined as the missing, minimum, and maximum checks performed on a data field.

Standard ARM QC bits use this specific format when defined as field attributes. The bit numbers for each
test are not required but are recommended. The assessment of the minimum or maximum test may be set
to a value of “Indeterminate” if more appropriate.

Examples:

• bit_1_description = “Value is equal to missing_value” ;

• bit_1_assessment = “Bad” ;

• bit_2_description = “Value is less than the valid_min” ;

• bit_2_assessment = “Bad” ;

• bit_3_description = “Value is greater than the valid_max” ;

• bit_3_assessment = “Bad” ;

For bit declaration of a field-level attribute, the existence of a bit declaration indicates the test could have
been performed. If a bit is not defined, that bit is free.

9.2.3 Unused ARM QC Bit

When an individual bit is unused, but must be declared, the field bit_<#>_description attribute is
assigned the value “Not used,” and the bit_<#>_assessment attribute is assigned the value of “Bad.” An
optional explanation as to why the bit is reserved may be included in a separate bit_<#>_comment field.

Required attributes:

• bit_<#>_description = “Not used”

• bit_<#>_assessment = “Bad”

Optional attribute:

• bit_<#>_comment = statement describing why the bit is reserved

The declaration of a valid_min or valid_max does not require the addition of QC fields. However, if a QC
field exists and the valid_min or valid_max attributes are defined, implementation of the test is
recommended.

9.2.4 Reporting Test Parameters in Description

Equation or limit parameters used in test analysis may be directly listed in the bit description or
referenced by a field attribute name. The bit description must not change between DOD versions. If a
parameter value might change, the description should be phrased in a generic manner, an external source
should be referenced, or a referenced field attribute should be used.

31

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

When a test references another field in the same file, list the field name in the bit_<#>_description
attribute to provide direct linkage.

Example:

float upwelling_broadband (time)
 upwelling_broadband:long_name = “Upwelling broadband radiation”
 upwelling_broadband:units = “W/m^2”
 upwelling_broadband:missing_value = -9999.f
 upwelling_broadband:ancillary_variables = “qc_upwelling_broadband”
int qc_upwelling_broadband (time)
 qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband

radiation”
 qc_upwelling_broadband:units = “unitless”
 qc_upwelling_broadband:flag_method = “bit”
 qc_upwelling_broadband:test_parameter_value = 0.03f
 qc_upwelling_broadband:bit_1_description = “mfr10m_cosine_solar_zenith_angle is less than

0.15”
 qc_upwelling_broadband:bit_1_assessment = “Bad”
 qc_upwelling_broadband:bit_2_description = “Percent difference is greater than

test_parameter_value”
 qc_upwelling_broadband:bit_2_assessment = “Bad”
 qc_upwelling_broadband:bit_3_description = “Value greater than 2 standard deviations of

historical mean”
 qc_upwelling_broadband:bit_3_assessment = “Bad”

In this example, the test_parameter_value QC field attribute is allowed to change without a DOD change
to accommodate a varying test limit for the QC test represented by bit 2. No attribute name is required,
but if used, the name should clearly reflect that the value is a QC test parameter. The test limit in bit 1 is
not allowed to change without a DOD change because the description attribute would change.

Test parameter values should be listed with the QC field unless the parameter value can be clearly
described with the attribute name and has significant value to the data field. The location of the attribute
(with data or QC field) is left to the Developer. Historically the valid_min, valid_max and valid_delta are
listed with the data field. This convention should be continued because (1) the CF convention uses
valid_min and valid_max, (2) the attribute name clearly describes how the values can be used as limits,
(3) it will continue with historical datastreams, and (4) the value can be understood and used without the
accompanying QC field.

9.2.5 QC Test Performed Indicator

A QC bit indicates when data fails a test. By definition, the test bit is not set if the test was not performed.
Some users may need to know if a test was or was not performed. This method is only valid for bit-
packed QC.

32

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

To indicate if a test was or was not performed, an optional bit is defined and set when the test abandons.
Only test abandonment will set the bit. This preserves the simple zero vs. non-zero QC field interpretation
method.

Required additional attribute for QC field:

• bit_<#>_test_abandoned = “bit_<#>“ ; // Set to the bit number of the test unable to be performed

Excluded attribute for QCfield:

• bit_<#>_assessment ; // This attribute is not used with a test indicator bit. The exclusion of this
attribute allows for automated procedures to mask “Bad” and “Indeterminate” bit numbers only.

Example:

int qc_upwelling_broadband (time)
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband
radiation”
qc_upwelling_broadband:units = “unitless”
qc_upwelling_broadband:flag_method = “bit”
qc_upwelling_broadband:bit_1_description = “mfr10m_cosine_solar_zenith_angle is less than
0.15”
qc_upwelling_broadband:bit_1_assessment = “Bad”
qc_upwelling_broadband:bit_1_test_abandoned = “bit_2”
qc_upwelling_broadband:bit_2_description = “mfr10m_cosine_solar_zentih_angle test not able to
be completed.”

9.2.6 Bit-Packed Global Attribute Declaration for Quality Control

The description of each test may be listed in the global attribute section if multiple fields use the exact
same bit and description. The description field attribute must exist indicating that the test descriptions are
listed in the global attributes. The attribute name follows the same format as the field-level style except
for a prepended “qc_”. The prepending “qc_” to the bit description and assessment is to continue with
historical format currently in the ARM Data Archive. For Standard ARM QC global attribute declarations
the existence of valid_min, valid_max or valid_delta data field attributes serve as indicator if the test was
attempted.

Required QC field attribute for global attribute bit declaration:

• description = “See global attributes for individual QC bit descriptions” ;

Example:

// global attributes:
qc_bit_1_description = “Value is equal to missing_value”
qc_bit_1_assessment = “Bad” ;
qc_bit_2_description = “Value is less than the valid_min”

33

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

qc_bit_2_assessment = “Bad” ;
qc_bit_3_description = “Value is greater than the valid_max”
qc_bit_3_assessment = “Bad”
qc_bit_4_description = “Difference between current and previous sample values exceeds valid_delta
limit”
qc_bit_4_assessment = “Indeterminate”
qc_bit_comment = “The QC field values are a bit-packed representation of true/false values for the
tests that may have been performed. A QC value of zero means that none of the tests performed on the
value failed.”

9.2.7 valid_min/valid_max vs. qc_min/qc_max Attribute Discussion

CF convention clearly states that valid_min, valid_max, and valid_range are to be used in conjunction
with _FillValue to define the valid values. By definition, a non-valid value is masked from analysis.
Historically, ARM used valid_min and valid_max as QC limits to suggest if a value should be used.
Therefore, the CF and ARM convention may be in conflict. Use of third-party software may have
unintended consequences resulting in valid data being removed from the analysis. valid_min and
valid_max values must be chosen carefully. If the intent is to use the valid_min and valid_max attribute
values as QC limits where the absolute exclusion of the values outside of the range defined by the two
attributes would have consequences, the use of qc_min and qc_max field attributes are recommended.
Complementing QC attributes and fields are updated to refer to qc_min and qc_max instead of valid_min
and valid_max.

Example:

int qc_upwelling_broadband (time)
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband
radiation”
qc_upwelling_broadband:units = “unitless”
qc_upwelling_broadband:flag_method = “bit” ;
qc_upwelling_broadband:bit_1_description =“Value is equal to missing_value”
qc_upwelling_broadband:bit_1_assessment = “Bad”
qc_upwelling_broadband:bit_2_description =“Value is less than the valid_min”
qc_upwelling_broadband:bit_2_assessment = “Bad”
qc_upwelling_broadband:bit_3_description = “Value is less than the qc_min”
qc_upwelling_broadband:bit_3_assessment = “Bad”
qc_upwelling_broadband:bit_4_description=“Value is greater than the qc_max”
qc_upwelling_broadband:bit_4_assessment = “Indeterminate”

9.2.8 Multiple Field Summarized Quality Control

It is optional to summarize QC for multiple data fields in a single QC field. Multiple data fields may use
the same QC field with a small change to the QC field. The previously declared QC standards apply to
multi-field QC fields.

34

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Requirements for Multiple-Field QC field:

• QC field name is prepended with “qc_” and the base name not match any existing data field name

• long_name = “Quality check results”

Example:

float signal_return_copol(time, height)
signal_return_copol:long_name = “Attenuated backscatter, co-polarization”
signal_return_copol:units = “counts/microsecond”
signal_return_copol:missing_value = -9999.f
signal_return_copol:ancillary_variables = “qc_signal_return”

float signal_return_xpol(time, height) ;
signal_return_xpol:long_name = “Attenuated backscatter, cross-polarization”
signal_return_xpol:units = “counts/microsecond”
signal_return_xpol:missing_value = -9999.f
signal_return_xpol:ancillary_variables = “qc_signal_return”

int qc_signal_return(time, height)
qc_signal_return:long_name = “Quality check results”
qc_signal_return:units = “unitless”
qc_signal_return:flag_method = “bit”
qc_signal_return:bit_1_description = “Value is equal to missing_value”
qc_signal_return:bit_1_assessment = “Bad”
qc_signal_return:bit_2_description = “The instrument detects an A/D start (timing corruption)
error”
qc_signal_return:bit_2_assessment = “Bad”

9.2.9 Dimensionally Summarized Quality Control

Multi-dimensional QC data may be summarized for one or more of the dimensions into the remaining
dimensions. The decision to summarize QC and how to do so is left to the translator/mentor/Developer. A
technical description of the process may be too long to describe in an attribute. If the method used is not
described in a field attribute, a description of the method must be described in detail in a technical
document.

The previously declared QC standards apply to dimensionally summarized QC.

Example:

float signal_return_copol(time, height)
signal_return_copol:long_name = “Attenuated backscatter, co-polarization”
signal_return_copol:units = “counts/microsecond”
signal_return_copol:missing_value = -9999.f
signal_return_copol:ancillary_variables = “qc_signal_return_copol”

int qc_signal_return_copol(time)

35

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

qc_signal_return_copol:long_name = “Quality check results on field: Attenuated backscatter, co-
polarization”
qc_signal_return_copol:units = “unitless”
qc_signal_return_copol:flag_method = “bit”
qc_signal_return_copol:comment = “A QC failure anywhere along the profile will result in the QC
bit being set.”
qc_signal_return_copol:bit_1_description = “Value is equal to missing_value”
qc_signal_return_copol:bit_1_assessment = “Bad”
qc_signal_return_copol:bit_2_description = “The instrument detects an A/D start (timing
corruption) error”
qc_signal_return_copol:bit_2_assessment = “Bad”

9.3 Integer Quality-Control Fields

The optional integer QC field has the same name as the data field with the addition of a “qc” before the
field name joined with an underscore. The standard integer QC field follows the same descriptive text
format as bit-packed QC with the exception of changing “bit” to “flag” in all attribute names and using
integer values instead of bit-packed values. Integer QC only allows one state to be set at a time.

The flag_method = “integer” indicates the values are interpreted as integers.

Required attribute for data field:

• ancillary_variables = the corresponding QC field name(s)

Required attributes for QC field:

• long_name = “Quality check results on field: <field’s long_name attribute value>”

• units = “unitless”

• description = “This field contains integer values indicating the results of QC test on the data. Non-
zero integers indicate the QC condition given in the description for those integers; a value of 0
indicates the data has not failed any QC tests.”

• flag_method = “integer”

Required attribute for global attribute bit declaration:

• description = “See global attributes for individual QC flag descriptions.”

Example:

float upwelling_broadband (time)
upwelling_broadband:long_name = “Upwelling broadband radiation”
upwelling_broadband:units = “W/m^2”
upwelling_broadband:missing_value = -9999.f
upwelling_broadband:ancillary_variables = “qc_upwelling_broadband”

36

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

int qc_upwelling_broadband (time)
qc_upwelling_broadband:long_name = “Quality check results on field: Upwelling broadband
radiation”
qc_upwelling_broadband:units = “unitless”
qc_upwelling_broadband:flag_method = “integer” ;
qc_upwelling_broadband:flag_1_description = “Value is equal to missing_value”
qc_upwelling_broadband:flag_1_assessment = “Bad”
qc_upwelling_broadband:flag_2_description = “Value is less than 2 standard deviations of
historical mean”
qc_upwelling_broadband:flag_2_assessment = “Indeterminate”
qc_upwelling_broadband:flag_3_description = “Value greater than 2 standard deviations of
historical mean”
qc_upwelling_broadband:flag_3_assessment = “Indeterminate”

9.3.1 Integer Global Attribute Declaration for Quality Control

The description of each test may be listed in the global attribute section if multiple fields use the exact
same flag number and description. The description field attribute must exist, indicating that the test
descriptions are listed in the global attributes. The attribute name follows the same format as the field-
level style except for a prepended “qc_”. Prepending “qc_” to the integer flag description and assessment
should continue using the historical format currently in the ARM Data Archive. For Standard ARM QC
global attribute declarations, the existence of valid_min, valid_max, or valid_delta data field attributes
serve as indicators if the test was attempted.

Required QC field attribute for global attribute bit declaration:

• description = “See global attributes for individual QC flag descriptions”

Example:

// global attributes:
qc_flag_1_description = “Value is equal to missing_value”
qc_flag_1_assessment = “Bad”
qc_flag_2_description = “Value is less than the valid_min”
qc_flag_2_assessment = “Bad”
qc_flag_3_description = “Value is greater than the valid_max”
qc_flag_3_assessment = “Bad”
qc_flag_4_description = “Difference between current and previous sample values exceeds
valid_delta limit”
qc_flag_4_assessment = “Indeterminate”
qc_flag_comment = "“The QC field values are integers indicating the results of QC tests on the data.
Non-zero integers indicate the QC condition given in the description for those integers; a value of 0
indicates the data has not failed any QC tests.”

37

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

9.4 Ancillary Quality-Control Fields

The “aqc” convention can be used to allow inclusion of QC fields that cannot be updated to meet the bit-
packed or integer QC format. The required long_name and units field attributes also apply to “aqc”.

One must be reasonable when choosing to use aqc_<field> instead of qc_<field>. The primary reason for
choosing to use ancillary QC fields is to preserve the original format. There is no standard format for
“aqc” other than the required long_name and units attributes.

10.0 Guidelines to Describe Source

When multiple inputs or algorithms are used to compute data fields, it may be useful to indicate the
source of the input or algorithm at the field level. In such cases, an optional field attribute or optional field
indicating the source of the data may be added.

10.1 Source Field Attribute

If the source does not change, the input is indicated with an optional source field attribute. Enough
information to fully trace the values must be provided with a syntax of
“<datastream_name>:<field_name>.” Multiple sources may be listed separated by a single space
character. The source field may optionally describe a method or algorithm instead of an input datastream.

Example:

• ARM datastream and field name:

– source = “sgpmetE13.b1:atmospheric_temperature”

– source = “sgpmwrC1.b1:vap sgpmwrpC1.b1:vapor”

• Algorithm:

– source = “myers_briggs”

– source = “rutherfurd_1.2”

– source = “calvin_3.2 hobbs_1”

10.2 Source Field

For describing a time-dependent source, an optional independent source field is used. The base field name
matches the data field name preceded by “source” and joined to the data field name with an underscore.
An ancillary_variables attribute is used to indicate the corresponding source field name. Multiple sources
may be listed separated by a single space character. The data type is an integer.

Required attribute for data field:

• ancillary_variables = <source field name>

38

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Required attributes for source field:

• long_name = “Source of field: <data field’s long_name attribute value>”

• units = “unitless”

• description = “This field contains integer values which should be interpreted as listed. A value of 0
represents no source available.”

• flag_method = “integer”

• flag_<#>_description = Description of source

Optional attribute for source field:

• flag_<#>_comment = optional attribute to provide more details on how the data was computed.

The meanings of the possible integer source values are indicated in the source field attributes
flag_<#>_description. If there are no data samples for a particular time, the value is set to zero. If a
source preference ranking is appropriate, lower numeric values indicate higher preference.

If the source is constant in other dimensions, the source field is recommended to be a function of time
only.

Example:

float aod (time)
aod:long_name = “Aerosol optical depth”
aod:units = “unitless”
aod:missing_value = -9999.f
aod:ancillary_variables = “source_aod”

int source_aod(time)
source_aod:long_name = “Source for field: Aerosol optical depth”
source_aod:units = “unitless”
source_aod:flag_method = “integer”
source_aod:description = “This field contains integer values which should be interpreted as listed. A
value of 0 represents no source available.”
source_aod:flag_1_description = “sgpmfrC1.c1:aerosol_optical_depth”
source_aod:flag_2_description = “sgpmfrsrC1.b1:aerosol_optical_depth”
source_aod:flag_2_comment = “Fill gaps of 3 days or less via interpolation”
source_aod:flag_3_description =“sgpnimfraod1michC1.c1:aod”
source_aod:flag_4_description =“sgpnimfraod1michE13.c1:aod”
source_aod:flag_5_description =“sgpnimfraod1michE13.c1:aod sgpnimfraod1michC1.c1:aod”

10.3 Source Bit-Packed Method

Some datastreams may use multiple sources for each time sample. As stated in the previous section,
multiple sources may be indicated using the flag_<#>_description method. If listing all possible
combinations of sources is extremely complicated, the use of the bit-packed method is recommended.

39

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Only one method of indicator is allowed at a time (mixing of integer and bit-packed values in the same
field is not allowed). The use of this type of method is indicated by the use of the flag_method field
attribute.

Required field attribute:

• long_name = “Source of field: <data field’s long_name attribute value>”

• units = “unitless”

• description = “This field contains bit-packed integer values, where each bit represents a source of
the data. Non-zero bits indicate the source used in the description for those bits; a value of 0 (no bits
set) indicates no source.”

• flag_method = “bit”

Example:

int source_aod (time) ;
source_aod:long_name = “Source for field: Aerosol optical depth”
source_aod:units = “unitless”
source_aod:description = “This field contains bit-packed integer values, where each bit represents a
source of the data. Non-zero bits indicate the source used in the description for those bits; a value of
0 (no bits set) indicates no source.”
source_aod:flag_method = “bit”
source_aod:bit_1_description = “sgpmfrsrC1.c1:aerosol_optical_depth”
source_aod:bit_2_description = “sgpmfrsrC1.b1:aerosol_optical_depth”
source_aod:bit_2_comment = “Fill gaps of 3 days or less via interpolation”
source_aod:bit_3_description = “sgpnimfraod1michC1.c1:aod”
source_aod:bit_4_description = “sgpnimfraod1michE13.c1:aod”

11.0 Process for Evaluating Exceptions

This section formalizes the ARM data standards exception request process.

11.1 Identifying Exceptions

There are two primary methods used to identify exceptions from the required standards. The first method
involves the use of the ARM Process Configuration Management (PCM) tool at
https://engineering.arm.gov/pcm/Main.html. The PCM tool is used by ingest and VAP developers, and
allows them to develop DODs for ARM data products. DODs define metadata in the netCDF header, and
the PCM tool analyzes and validates the metadata against current ARM data standards. Exceptions are
flagged for further review.

The second method for identifying exceptions are simple visual inspection of data products by members
of the ARM Data Management Facility (DMF), ARM Data Quality Office, ARM Data Archive, and

40

https://engineering.arm.gov/pcm/Main.html

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

ARM Instrument Mentors and VAP Translators. This method relies on the expertise of the various parties
and will only be used after the Developer has attempted to resolve issues flagged in the PCM tool.

11.1.1 Exception Process

The Exception Process includes specific steps taken to provide clarity to the process of identifying and
reporting exceptions from required standards.

11.2 Size and Members of Exception Committee

The Exception Committee consists of five continual members drawn from areas encompassing the
expertise within the ARM infrastructure. As such, an ARM VAP manager, a Metadata QC reviewer, a
representative from the ARM Data Archive, a representative from the ARM Data Quality Office, and an
impartial translator or mentor to represent the scientific community should be included in the committee.
The committee is authorized to make decisions regarding the approval of exceptions on a case-by-case
basis with approval by the ARM management team. The review committee should be included on all data
product Engineering Work Orders (EWO).

11.2.1 Review and Approval of Exceptions

The Exception Committee will review each data product exception on a case-by-case basis using the
summary report supplied by the ingest/VAP Developer and Mentor/Translator. The committee will make
a decision based on the severity of each exception and cost/benefit analysis that considers available
resources, program priorities, and potential impacts of allowing the exception. At least four committee
members must agree to the exception for it to be granted.

Prior to the release of an official product, the exception must be documented in a clear and consistent
manner, in the appropriate EWO/Engineering Change Order (ECO).

11.2.2 Documentation of Exceptions

The proposed exception summary report and decisions of the review committee will be documented in the
appropriate EWO/ECO. Any approved exceptions to ARM required standards must be documented in
appropriate technical documentation (e.g., instrument handbook, technical report, web page, etc.) at the
discretion of the Exception Committee.

11.2.3 Exception Process Typical Workflow
1. The ingest/VAP Developer will work with the Mentor/Translator to create a DOD for their product

using the PCM tool. Any exceptions identified by the PCM tool are exported to a summary report.
These exceptions are then reviewed by the Developer/Mentor/Translator and either updated to meet
standards or submitted to the Exception Committee for review with a description explaining the need
for an exception. Relevant information obtained from data reviews performed by members of the
ARM Data Management Facility and/or DQ Office is added to the summary report.

41

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

2. The summary report is sent to members of the Exception Committee. The committee reviews the
request and makes a decision regarding allowing or denying the exception.

3. The comments and decisions of the committee members, along with the exception for each case, are
documented within the appropriate data product EWO/ECO for documentation.

4. The data product exceptions for each product are documented within the relevant reports (e.g.,
instrument handbook, technical report, web page, etc.) so they are available to external data users.

11.2.4 Examples of Exceptions

Some examples of reasons for granting exceptions include:

1. compliance with another standard

2. historical continuity

3. complying with standard prohibitively difficult (i.e., satellite data).

42

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Appendix A

Definitions

Instrument Class = A convenient name for a grouping of specific instruments which share important
structural and physical properties. For example, 1ebbr, 5ebbr, 30ebbr, 1440ebbr instruments
[instrument_codes] all belong to the “ebbr” instrument class.

Instrument = A single piece of hardware or group of hardware that records a measurement

Site = Geographical region

Facility = A specific geographical location within a Site where an instrument is located. Multiple
facilities may exist for each Site.

<#> = enumerated number placeholder

<field> = a general placeholder for a field name

RAW = Data file created by instrument

Developer = Person responsible for software development

Mentor = Person responsible for instrument installation and general operations

Translator = Person responsible for VAP development and maintenance

A.1

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Appendix B

Bin Values Changing Each Time Step
dimensions:

time = UNLIMITED ; // (1440 currently)
droplet_size = 21 ;
bound = 2 ;

variables:
 double time(time) ;

time:long_name = “Time offset from midnight” ;
time:units = “seconds since 2013-01-06 00:00:00 0:00” ;

 float droplet_size(time, droplet_size) ;
droplet_size:long_name = “Droplet size” ;
droplet_size:units = “um” ;
droplet_size:bounds = “droplet_size_bounds” ;

float droplet_size_bounds(time,droplet_size,bound) ;
float ccn_number_concentration(time, droplet_size) ;

ccn_number_concentration:long_name = “AOS ccn number concentration by bin” ;
ccn_number_concentration:units = “count” ;
ccn_number_concentration:missing_value = -9999.f ;
ccn_number_concentration:cell_methods = “droplet_size: sum” ;

B.1

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Appendix C

ARM udunits Compliant Unit Descriptors
https://wiki.arm.gov/bin/view/Engineering/StandardizingDODs

For complete UDUNITS compliant units reference see UDUNITS-2 database that comprises of the
following XML files:

• SI unit prefixes

• SI base units

• SI derived units

• Units accepted for use with the SI

• Non-SI units

Table 2. Base units.

Base Quantity Unit Name Symbol Comment

Length, distance,
height

meter m

Mass gram g

Time second s

 minute min

 hour h hr also used

 day d day also used

 Gregorian year a exactly 365.242198781
d, yr also used

Temperature,
thermodynamic or
absolute, brightness
temperature

Kelvin K

C.1

https://wiki.arm.gov/bin/view/Engineering/StandardizingDODs
http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-prefixes.xml
http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-base.xml
http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-derived.xml
http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-accepted.xml
http://www.unidata.ucar.edu/software/udunits/udunits-2/udunits2-common.xml

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Table 3. Derived units, first order

Base Quantity Unit Name Symbol Comment

Frequency, sample
rate

hertz Hz, s^-1

Force newton N

Energy joule J

Power watt W

Electric Potential,
voltage

volt V Common in
uncalibrated
quantities

Electrical Resistance ohm ohm Used instead of SI
symbol capital
Omega, which cannot
be easily represented

Table 4. Commonly used derived units.

Base Quantity Unit Name Symbol Comment

Atmospheric
pressure, barometric
pressure, station
pressure

kilopascal kPa Use hPa only to
replace old mbar, do
not use mbar

Density, water vapor
density, absolute
humidity,
concentration of trace
substance

gram per cubic meter g/m^3

Energy Flux Density,
irradiance, heat flux,
net radiation

watt per square meter W/m^2

Plane angle, azimuth,
elevation, wind
direction, zenith

degree degree Radian (rad) is
sometimes used but
is not common in
atmospheric science.

Latitude degree north degree_N

Longitude degree east degree_E

Precipitable water
vapor

centimeter cm mm also acceptable

C.2

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Base Quantity Unit Name Symbol Comment

Precipitation millimeter mm hundredths of inches
also used but less
preferred

Precipitation rate millimeter per second mm/s

Radiance watt per square meter
per steradian

W m^-2 sr^-1 W/(m^2 sr) also
acceptable

Relative humidity percent % Fraction (unitless)
also used but less
preferred

Solid angle steradian sr

Temperature, dry
bulb, wet bulb,
dewpoint, potential,
equivalent potential,
virtual

celsius degC

Velocity, wind speed,
ascent rate

meters per second m/s

Water vapor mixing
ratio (per mass of dry
air)

grams per kilogram g/kg

Water vapor pressure kilopascal kPa hPa also used but
less preferred, do not
use milibar (mbar)

Wavelength nanometer nm micrometer (um) also
used but less
preferred

Wavenumber inverse centimeter cm^-1

Table 5. Odd and ends.

Base Quantity Unit Name Symbol Comment

Bins unitless

Mass density gram per cubic
centimeter

g/cm^3,

Number density inverse cubic
centimeter

1/cm^3

C.3

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Base Quantity Unit Name Symbol Comment

Molar mixing ratio micro-mol per mol umol/mol

Volumetric mixing
ratio

parts per million by
volume

ppmV

Counts count

Ratio, fraction fraction unitless % allowed but less
preferred for ratios

Probability fraction unitless

Relative power dB Mostly used for radar
return signals

Soil moisture content
by volume

cubic meter per cubic
meter

m^3/m^3

Soil water potential kilopascal kPa

Table 6. Prefixes

Prefix Power of 10 Symbol

pico -12 p

nano -9 n

micro -6 u

milli -3 m

centi -2 c

deci -1 d

hecto 2 h

kilo 3 k

mega 6 M

giga 9 G

tera 12 T

C.4

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

Appendix D

ARM netCDF Data File Example
data file name = sgptempprofile10sC1.c1.20130101.010203.nc

dimensions:
time = UNLIMITED ; // (14400 currently)
bound = 2
height = 100

variables:

 int base_time
base_time:string = “01-Jan-2013,00:00:00 GMT”
base_time:long_name = “Base time in Epoch”
base_time:units = “seconds since 1970-1-1 0:00:00 0:00”
base_time:ancillary_variables = “time_offset”

 double time_offset (time)
time_offset:long_name = “Time offset from base_time”
time_offset:units = “seconds since 2013-01-01 00:00:00 0:00”
time_offset:ancillary_variables = “base_time”
time_offset:bounds = “time_bounds”

 double time (time)
time:long_name = “Time offset from midnight”
time:units = “seconds since 2013-01-01 00:00:00 0:00”
time:standard_name = “time”
time:bounds = “time_bounds”

 double time_bounds (time, bound)
time_bounds:long_name = “Time cell bounds”
time_bounds:units = “seconds”

 float height(height)
height:long_name = “Center of height bin”
height:units = “m”
height:standard_name = “height”
height:bounds = “height_bounds”

 float height_bounds(height, bounds)
height_bounds:long_name = “Height bin bounds”
height_bounds:units = “m”

 float atmospheric_temperature(time, height)
atmospheric_temperature:long_name = “Atmospheric temperature”
atmospheric_temperature:units = “degC”
atmospheric_temperature:missing_value = -9999.f
atmospheric_temperature:standard_name = “air_temperature”
atmospheric_temperature:cell_methods = “time:mean height:mean”

D.1

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

atmospheric_temperature:ancillary_variables = “qc_atmospheric_temperature
source_atmospheric_temperature instrument_status”

 int qc_atmospheric_temperature(time, height)
qc_atmospheric_temperature:long_name = “Quality check results on field: Atmospheric
temperature”
qc_atmospheric_temperature:units = “unitless”
qc_atmospheric_temperature:flag_method = “bit”
qc_atmospheric_temperature:comment = “A QC bit set anywhere along the profile will result in
the bit being set.”
qc_atmospheric_temperature:bit_1_description = “Value is equal to missing_value”
qc_atmospheric_temperature:bit_1_assessment = “Bad”
qc_atmospheric_temperature:bit_2_description = “The instrument detected a hardware failure”
qc_atmospheric_temperature:bit_2_assessment = “Bad”
qc_atmospheric_temperature:bit_3_description = “Values greater than two standard deviations
of historical distribution”
qc_atmospheric_temperature:bit_3_assessment = “Indeterminate” ;

 int source_atmospheric_temperature (time)
source_atmospheric_temperature:long_name = “Source for field: Atmospheric temperature”
source_atmospheric_temperature:units = “unitless”
source_atmospheric_temperature:description = “This field contains bit-packed integer values,
where each bit represents a source of the data. Non-zero bits indicate the source used in the
description for those bits; a value of 0 (no bits set) indicates no source.”
source_atmospheric_temperature:flag_method = “bit”
source_atmospheric_temperature:bit_1_description = “sgpsondewnpnC1.b1:tdry”
source_atmospheric_temperature:bit_2_description = “sgpaeriprofC1.c1:temperature”
source_atmospheric_temperature:bit_3_description = “sgp1290rwpC1.c1:temp”

 source_atmospheric_temperature:bit_4_description = “conwarfX1.a1:atmos_temp”
 int instrument_status(time)

instrument_status:long_name = “Instrument status”
instrument_status:units = “unitless”
instrument_status:missing_value = -9999
instrument_status:flag_masks = 1, 2, 4, 8
instrument_status:flag_meanings = “power_failure hardware_fault software_fault
maintenance_mode”

 float lat
lat:long_name = “North latitude”
lat:units = “degree_N”
lat:standard_name = “latitude”
lat:missing_value = -9999
lat:valid_min = -90.f
lat:valid_max = 90.f

 float lon
lon:long_name = “East longitude”
lon:units = “degree_E”
lon:standard_name = “longitude”
lon:missing_value = -9999.f

D.2

ARM Standards Committee, April 2014, DOE/SC-ARM-14-010

lon:valid_min = -180.f
lon:valid_max = 180.f

 float alt
alt:long_name = “Altitude above mean sea level”
alt:units = “m”
alt:standard_name = “altitude”
alt:missing_value = -9999.f

// global attributes:
:command_line = “tempprofile -d 20130101 -f sgp.C1”
:Conventions =“ARM_Convention-1.0 CF-1.6”
:process_version = “ingest-met-4.10-0.el5”
:dod_version = “tempprofile-b1-2.0”
:input_datastreams = “sgpsondewnpnC1.b1 : 6.1 : 20130101 ;\n sgpaeriprofC1.c1 : 1.1 :
20130101.000000 ;\n sgp1290rwpC1.c1: Release_1_4 : 20130101.000000 ;\n conwarfX1.a1 :
Release_2_9 : 20130101.000000”
:site_id = “sgp”
:platform_id = “tempprofile”
:facility_id = “C1”
:data_level = “c1”
:location_description = “Southern Great Plains (SGP), Lamont, OK (C1)
:datastream = “sgptempprofileC1.c1”
:title = “Atmospheric Radiation Measurement (ARM) program best estimate of atmospheric temperature
profile”
:institution = “United States Department of Energy - Atmospheric Radiation Measurement (ARM)
program”
:description = “Best estimate of atmospheric temperature profile over Lamont, OK”
:references = “http://www.arm.gov/data/vaps/”
:history = “created by user dsmgr on machine ruby at 1-Jan-2007,2:43:02”

D.3

http://www.arm.gov/data/vaps/

	1.0 Introduction
	1.1 Advantages of Following Standards
	1.1.1 Example of Tools Using Standards

	2.0 The Standards Hierarchy
	2.1 Required Standards
	2.1.1 Recommended Standards

	3.0 Optional Methods
	4.0 Significant Changes
	5.0 File Type/Format
	6.0 Construction of Data File Name
	6.1 File Naming Conventions for Processed Data
	6.1.1 File Name Length
	6.1.2 Data Level
	6.1.3 Best Estimate
	6.1.4 File Duration

	6.2 Guidelines for Original RAW File Name
	6.3 File Naming Conventions for RAW ARM Data
	6.4 File Naming Conventions for TAR Bundles
	6.5 File Naming Conventions for Field Campaign TAR Bundles
	6.6 Other Data Formats
	6.7 Guidelines to Name Quick-Look Plot Filenames
	6.8 Case Sensitive File Naming

	7.0 Guideline for netCDF File Structure
	7.1 Dimensions
	7.1.1 Time Dimension

	7.2 Time
	7.2.1 base_time and time_offset Fields
	7.2.2 Time Field
	7.2.3 Time Bin Boundary
	7.2.4 Coordinate Dimensions
	7.2.5 Coordinate Bin Dimension
	7.2.6 Additional Dimension
	7.2.7 Cell Method Attribute

	7.3 Location Fields
	7.4 Guidelines for Construction of Field Names
	7.4.1 Field Names Hierarchy
	7.4.2 Field Name Descriptors
	7.4.2.1 Prefix Qualifier
	7.4.2.2 Measurement Qualifier
	7.4.2.3 Subcategory Qualifier
	7.4.2.4 Quantity Qualifier

	7.5 State Indicator Field
	7.5.1 Exclusive States
	7.5.2 Inclusive States

	7.6 Field Attributes
	7.6.1 Required Field Attributes
	7.6.2 Required with Conditions
	7.6.3 missing_value vs. _FillValue Discussion

	7.7 Standard_Name Attribute
	7.8 ARM Standard Field Attribute Names
	7.8.1 Other Possible Attributes (Not All Inclusive)

	7.9 Sensor Height
	7.10 Attribute Datatype

	8.0 Global Attributes
	8.1 Required and Recommended Global Attributes

	9.0 Quality-Control Parallel Fields
	9.1 Bit-Packed Numbering Discussion
	9.2 Standard Bit-Packed Quality-Control Fields
	9.2.1 Field-Level Bit Description
	9.2.2 Standard ARM QC
	9.2.3 Unused ARM QC Bit
	9.2.4 Reporting Test Parameters in Description
	9.2.5 QC Test Performed Indicator
	9.2.6 Bit-Packed Global Attribute Declaration for Quality Control
	9.2.7 valid_min/valid_max vs. qc_min/qc_max Attribute Discussion
	9.2.8 Multiple Field Summarized Quality Control
	9.2.9 Dimensionally Summarized Quality Control

	9.3 Integer Quality-Control Fields
	9.3.1 Integer Global Attribute Declaration for Quality Control

	9.4 Ancillary Quality-Control Fields

	10.0 Guidelines to Describe Source
	10.1 Source Field Attribute
	10.2 Source Field
	10.3 Source Bit-Packed Method

	11.0 Process for Evaluating Exceptions
	11.1 Identifying Exceptions
	11.1.1 Exception Process

	11.2 Size and Members of Exception Committee
	11.2.1 Review and Approval of Exceptions
	11.2.2 Documentation of Exceptions
	11.2.3 Exception Process Typical Workflow
	11.2.4 Examples of Exceptions
	Appendix A Definitions
	Appendix B Bin Values Changing Each Time Step
	Appendix C ARM udunits Compliant Unit Descriptors
	Appendix D ARM netCDF Data File Example

