Climate Modeling Best Estimate (CMBE) Dataset - New Additions

R.B. McCoy⁽¹⁾, S. Xié⁽¹⁾, S. Klein⁽¹⁾, E. Clothiaux⁽²⁾, C. Long⁽³⁾, D. Turner⁽⁴⁾, S. McFarlane⁽³⁾, M. Jensen⁽⁵⁾, K. Gaustad⁽³⁾, D. Cook⁽⁷⁾, K. Johnson⁽⁵⁾, Y. Shi⁽³⁾, R. Cederwall⁽¹⁾, R. McCord⁽⁶⁾, G. Palanisamy⁽⁶⁾, K. Gibson⁽⁶⁾, R. Neale⁽⁶⁾, Y. Lin⁽⁹⁾, J.-C. Golaz⁽⁹⁾

(1) LLNL, (2) PSU, (3) PNNL, (4) UW-Madison, (5) BNL, (6) ORNL, (7) ANL (8) NCAR, (9) GFDL Contact: mccoy20@linl.gov

Introduction

The Climate Modeling Best Estimate (CMBE) data was created to serve the needs of climate model developers.

The dataset was assembled from the highest quality ARM observational and Value-Added Product (VAP) data relevant to climate model evaluation and diagnostics.

The temporal resolution was chosen to be comparable with the climate model **resolution of one hour**. It is a multi-year dataset over the 5 primary ARM sites at **SGP**, **NSA and TWP**.

Detailed description of the data and the algorithms: http://science.arm.gov/wg/cpm/scm/best_estimate.html sep-ANM Southern Great Plants Site. NSA- Norm Slope of Allaska. TWP-Trooted Western Plants

CMBE Purpose

• Encourage greater use of ARM data by the modeling community.

• Create highly polished, multi-year datasets suitable for modelers.

• Facilitate the use of ARM observational data by model developers in the model diagnosis, evaluation and improvement where possible.

New Additions

Previous version of the CMBE dataset (CMBE v2) consists of **hourly averaged**:

- cloud fraction (ARSCL,TSI),
- liquid water path & precipitable water (MWRRET),
- surface radiation fluxes (QCRAD).

New additions:

The CMBE v3 dataset is being extended by

- soundings (sondewnpn, Issonde),
- surface precipitation (SMOS),
- surface heat fluxes (BAEBBR),
- surface meteorology fields (SMOS),
- top of the atmosphere radiative fluxes (satellite),
- Numerical Weather Prediction (NWP) model analysis data.

The CMBE data is a condensed and integrated subset from ACRF data collection with measurements that have undergone stringent quality controls and are usually "best estimates" derived from several instruments and /or VAPs.

CMBE use at NCAR and GFDL

CMBE dataset is used in evaluation of the $\ensuremath{\text{NCAR}}$ and the $\ensuremath{\text{GFDL}}$ climate models.

- The following runs were used in the examples below:
- GFDL AM3 12-y JJA mean from 1996-2007,
 NCAR CAM3.5 an annual climatology from a
- NCAH CAM3.5 an annual climatology from a sample 10-year run.

Precipitation and 2-meter Temperature at SGP

GFDL AM3 vs. CMBE
 AM3 fails to simulate nocturnal precip. and overestimates the mid-day.
 AM3 shows warm bias in

Diurnal cycle

12 Locol Time (hr)

300 AM3

100

-200

0

AM

CAM3.5 overestimates the observed precip. during summer months and underestimates during cold seasons at SGP.

Sensible and Latent Heat at SGP

GFDL AM3 vs. CMBE

CAM3.5

 AM3 overestimates SH and underestimates LH, consistent with its warm and dry bias in temperature over the central US.

NCAR CAM3.5 vs. CMBE

• CAM3.5 overestimates LH in warm months (Mar.-Oct.) and slightly underestimates SH over Jun-Dec period.

CAM3.5 shows significant moist bias during summer months near the surface.

- The CMBE v3 release in May 2009.
- The high temporal resolution version of CMBE
- The CMBE data for ARM Mobile Facilities (AMFs).
- Updating to the most current available original data.
- The statistical summaries for the CMBE.

nis work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

<u>_____</u>

343 21-5 0 512345

LLNL-POST- 411413