Tracking Tropical Cloud Systems – Comparison of Observations with Simulations by the Weather Research and Forecasting (WRF) Model

Andrew Vogelmann¹, Wuyin Lin², Edward Luke¹, Alice Cialella¹, Michael Jensen¹, Minghua Zhang²

¹ Brookhaven National Laboratory, ² State University of New York at Stony Brook

SUMMARY

To aid in improving model parameterizations of clouds and convection, we examine the capability of models, using explicit and parameterized convection, to simulate the life cycle of tropical cloud systems in the vicinity of the ARM Climate Research Facility (ACRF) Tropical Western Pacific sites.

- Model statistics are simulated using the Weather Research and Forecasting (WRF) Model.
- Simulations are compared to the observed cloud life cycle, determined using a satellite cloud tracking algorithm. Simulations are run at a resolution comparable to observations.

Later investigations will examine how well the simulated cloud systems compare with ACRF observations in terms of properties such as cloud overlap within the vertical column as a function of cloud life cycle stage.

1. SIMULATIONS

- Simulations run on NY Blue Blue Gene/L Supercomputer
- 18,432 nodes each w/ 2 processors and 1 GB
- Jointly operated by BNL and SBU
- 40% dedicated to BNL & SBU

Baseline Simulation Parameters

- One-week simulations: 25 to 31 December, 2003
 Domains:
- Inner: 4-km resolution, 22S-17N, 100E-162E Outer: 20-km resolution, 27S-27N, 89E-170E
- Radiation: LW=RRTM, SW=Dudhia
 Cloud microphysics: WRF Single-Moment 3-class
- Four Sensitivity Tests to Convective Treatment

 Outer domain: Kain Fritsch (new eta) each 6 mins

 Inner domain:
 - #1: Explicit convection (no parameterization) Cumulus scheme = Kain Fritsch (new eta)
 - #2: Called every 6 mins
 - #3: Called every 30 mins (inner and outer)
 - #4: Called each step (18s)

2. TRACKING

Satellite cloud identification and tracking performed using Boer and Ramanathan (1997)

- Observed tracking uses GOES-9 11 μm (channel 4) brightness temperature (BT)
- WRF-equivalent BTs for this pilot study are obtained by converting:
 - > Top-of-model outgoing longwave radiation (OLR) to a 11-µm narrowband BT
 - \succ Translate the 11- μ m narrowband BT from the 50-mb model top to 0 mb
 - Future studies can avoid the 1st conversion by storing the output for WRF's RRTM band #6 (820-980 $\rm cm^{-1}).$

We focus on mesoscale convective systems (MCS), defined as (Laing and Fritsch, 1993):

- Core area > 50,000 km² with BT < 219 K, surrounded by an anvil with BT < 240 K</p>
- Core area plus anvil area > 100,000 km²

Observed MCS statistics (blue) compared to WRF runs #1 (red) and #3 (green); the number of tracks, respectively, are 50, 45 and 32. Simulations #2 and #4 produced substantially fewer MCSs. Compared to observations, the WRF-simulated MCSs had smaller areas, shorter duration, and transited shorter distances. Further work will refine the simulations and assess the causes for these differences.

References

Boer, E, and V Ramanathan, 1997: Lagrangian approach for deriving cloud characteristics from satellite observations and its implications to cloud parameterization. *J. Geophys. Res.*, 102, 21,383–21,399.

Laing, A.G., and J.M. Fritsch, 1993: Mesoscale Convective Complexes over the Indian Monsoon Region. J. Climate, 6, 911–919.

Contact Information

- NY Blue Climate Science Wiki
- https://wiki.bnl.gov/bg_climate_science/index.php/Main_Page Andy Vogelmann
 - vogelmann@bnl.gov, 631-344-4421