The dependence of r for Q_s decreases as r varies. For $r < 1$ and $m = 1.40$, Q_s approaches the value 2 when $r >> \lambda$.

The wavelength dependence of σ_p is characterized by the Ångström exponent α, defined by $\sigma_p \propto \lambda^{-\alpha}$. The approximation is quite accurate.

A simple expression for Q_s would simplify calculation of many aerosol optical properties and would provide insight into the dependence of these properties on wavelength, index of refraction, RH, and the characteristic size of the aerosol.

Approximation of Q_{se}

Much of the variability in Q_{se} can be eliminated by plotting it against the quantity $z = 2(2\pi r/\lambda)(m - 1)$. For $\lambda = 0.50$ μm and $m = 1.40$, $z = 10(\pi r/\lambda)$.

Wiggles are unimportant, as they are smoothed out by the spread in the size distribution.

In many situations the majority of the scattering is from the range $0.1 < r/\lambda < 0.7$ and $0 < z < 7$, over which Q_{se} can be accurately approximated by a gamma function:

$$Q_{se} = 0.85 + 0.15 \exp(-z).$$

For a size distribution which is a gamma function with effective radius r_{eff} and effective variance σ_{eff}^2, this approximation yields an analytic expression for the scattering cross section $\sigma_p = 0(\exp(\alpha z) - 1)$, where α is the Ångström exponent, and for the Ångström exponent α,

$$\alpha = \frac{2\pi r_{eff}}{\lambda}(1 - \frac{\lambda}{2\pi r_{eff}}).$$

explicitly showing the dependences of these quantities on properties of the size distribution (i.e., r_{eff} and σ_{eff}). The dependence of α on RH is not simple, as σ_{eff} increases but m decreases with increasing RH.

Comparison of σ_{eff}

The single mode fit provides a good approximation (within 10-20%) for 0.05μm < r_{eff} < 0.7μm, and the double mode fit for 0.1μm < r_{eff} < 1.2μm.

Most measurements of d yield values between 0 and 2. The approximation is quite accurate.

Conclusions

- Q_{se} depends mostly on $z = 4\pi r/\lambda(m - 1)$.
- Q_{se} can be accurately approximated by a sum of gamma functions over the range of interest.
- Analytic results for σ_p and d can be obtained for size distributions which are gamma functions or sums of gamma functions.
- This method can also be applied to lognormals.