

Measures of aerosol-cloud interactions and their uncertainties: A case study from the AMF Pt. Reyes deployment

Allison McComiskey, Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder / NOAA Earth System Research Laboratory Graham Feingold, NOAA Earth System Research Laboratory, Boulder, CO, Shelby Frisch, Cooperative Institute for Research in the Atmosphere, Colorado State University / NOAA Earth System Research Laboratory, Qilong Min, Atmospheric Sciences Research Center, State University of New York, Albany

1. Introduction

Measures of aerosol-cloud interactions (ACI), derived from a range of instruments and platforms, vary widely. As these measures are used in GCM parameterizations, understanding the causes and nature of this variability is essential to understanding and improving resulting uncertainty in calculated radiative forcing. Using data from the AMF Pt. Reyes deployment in 2005, we demonstrate the nature of aerosol-cloud interactions, specifically the first aerosol indirect effect, and variability in ACI measures for marine stratocumulus over the California coast.

A portion of the time series for September 2, 2005 shown above reveals little variability in aerosol concentrations and cloud properties making it difficult to quantify the first indirect effect in this environment from daily observations. However, statistics for the full deployment, shown in the frequency histograms below, provide ample variability for quantification of the first indirect effect.

Twomey (1974) defined the first aerosol indirect effect as the change in cloud optical depth with change in aerosol concentration for cloud of constant liquid water. We use the following definitions of ACI as measures of the first indirect effect with *a* representing the various aerosol proxies presented at left and N_{α} the cloud drop number derived from observed variables $[N_{\alpha}=f(r_{\alpha}LWP, T, P)]$:

$$ACI = \frac{\partial \ln \tau_d}{\partial \ln \alpha} = -\frac{\partial \ln r_e}{\partial \ln \alpha} = \frac{1}{3} \frac{d \ln N_d}{d \ln \alpha}$$

ACI values for the Pt. Reyes deployment are given for three *LWP* bins. Drop number calculations are dependent on *LWP* and do not require sorting by cloud water content. Observations are consistent with theory and maintain the expected relationships among the three different measures.

4. Uncertainty in Radiative Forcing

When used as a parameterization in GCMs, variability in ACI will result in uncertainty in cloud radiative forcing. Uncertainty for the variability in ACI from the cases above is illustrated here:

Top of the Atmosphere

 $F = f(N_{CCN}500) - f(N_{CCN}100)$

local forcing (100% cloud

diurnal average of the equinox

45° solar zenith angle

surface albedo = 0.15

cloud base height ~ 300 m

(Input values are near means for Pt. Reyes and represent a neutral solar geometry.)

Radiative Forcing (F)

LWP = 120 g m⁻²

Failure to consider drivers of variability in ACI may result in errors in radiative forcing of up to ~9 W m², for the coastal stratocumulus examined here. In a similar study, McComiskey and Feingold (2008) showed that error in ACI measures of 0.05 can translate to a range in calculated radiative forcing from -3 to -10 W m² per 0.05 unit ACI (0-0.33 scale) for a range of CCN geoncentrations from 300-2500 cm³ and *LWP* from 50-300 g m².

ACI may be sensitive to factors such as natural variability in aerosol and meteorological

parameters or methodologies for deriving cloud and aerosol properties. Comparisons of

•GCMs use ACI to parameterize aerosol-cloud interactions.

•Variability in observed ACI is high.

- attribution to physical processes and/or measurement uncertainties is unclear
- Empirical measures of ACI, explored for California coastal stratocumulus show:
 consistency among various ACI representations
- •ground-based measures consistent with in situ airborne measures
- -variability in ACI with dependence on (1) assumption of constant *LWP*, (2) methods for retrieving N_d (3) particle size, and (4) updraft velocity
- Variability in ACI is presented in the context of local cloud radiative forcing.
 for CA coastal stratecumulus from ~ -3 to -9 W m⁻²
- for a range of *LWP* and aerosol concentrations from ~ -3 to -10 W m⁻² for each 0.05 increment error in ACI

References

McComiskey, A and G. Feingold (2008), Quantifying error in the radiative forcing of the first aerosol indirect effect, *Geophys. Res. Lett.*, 35, L02810, doi:10.1029/2007GL032667.
Tworney, S. (1974), Pollution and the Plantetary Albedo, *Atmos. Env.*, v.8, pp. 1251-1256.

Acknowledgements

Thanks to David Turner, Mark Miller, Christine Chiu, John Ogren for their efforts on preparing the datasets used here. Funding: DOE/ARM (DE-AI02-06ER64215)