An Empirical Method for Estimating Visible Thin Cloud Optical Thickness (using data from TWP-ICE)

J. C. Barnard, C. N. Long, S. A. McFarlane, J. M. Comstock. E. I. Kassianov Pacific Northwest National Laboratory G. McFarquhar, M. Freer University of Illinois

Problem:

How do we estimate thin cloud optical thickness, τ_c , using ground-based shortwave irradiance measurements?

Possible Solutions:

means of finding $ au_{ m c}$
Min algorithm (2004)

total broadband downwelling irradiance Broadband algorithm to find visible $\tau_{\rm c}$; lots of computation

total broadband downwelling irradiance Simple empirical method (look right)

AMA

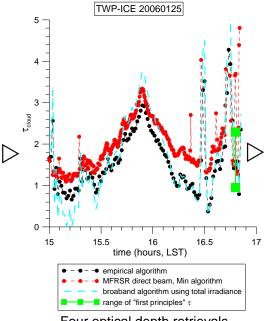
Total sky image, 1600 hours (LST) 01/25/2006 (Darwin); fairly uniform high cloud overcast

Simple empirical method:

From Barnard and Long (2004):

$$\tau_c = \frac{1.16/r - 1}{(1 - A)(1 - g)}$$

A = broadband surface albedo, 0.12,


g =asymmetry parameter = 0.77, (ice), and ...

$$r = \frac{T}{C\mu_0^{1/4}}$$

T = total downwelling shortwave irradiance

C = clear sky total downwelling irradiance (from Long [2000] algorithm)

 $\mu_0 = \text{cosine}(SZA)$

Four optical depth retrievals over 2 hour period; note "first principles" retrieval

But ...

Designed only for $\tau_c/\mu_0 > 5$ &

Designed only for completely overcast skies; finds "effective" $\tau_{\rm c}$

Question: Will it work for thin clouds and with less-than-full sky cover?

Let's find out ... see below left

Notes:

The "first principles" optical thickness was obtained from size distributions measured as an airplane descended through the cloud; the range in τ_c (about 1) depends on the ice habit assumed for the particles.

Increasing *g* from 0.77 to 0.81 in the empirical algorithm improves the agreement between this algorithm and the Min algorithm

Conclusions:

- All three methods provide results that are about the same; qood!
- 2)The three methods are roughly consistent with the "first principles" optical thickness