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Summary: Soundings acquired during the TWP-ICE IOP at Darwin show stronger buoyancies/CAPE for the “break” period late in the IOP than for the early “active”

monsoon period. Convective response to the stronger large-scale forcing neutralizes the moist stability during the “active” period; for the “break” period, sporadic moist
convection under moderate forcing keeps the mid-troposphere relatively cool, and combined with the low-level heating from surface turbulent fluxes, leads to a steeper
lapse rate, which generates more intense convection. The GISS SCM is able to simulate more intense deep convection for the “break” period than for the “active” period.

1. Introduction
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The TWP-ICE IOP included an early “active monsoon” period with an apparent oo POTaAdec o VergAdec Q2
maritime style of convection, and a late “break” period with occasional intense
continental convection. This IOP thus offers the opportunity to understand -

physical processes that cause differences in convective intensity and the ability of
GCM cumulus parameterizations to simulate these differences, which are
hypothesized to influence detrainment into radiatively important anvil clouds. o e e
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