A new approach to interpret aircraft spectral measurements of surface reflectance around ARM Central Facility

Y. Knyazikhin,1 A. Marshak,2 J. C. Chiu,3 D. Huang,4 W. Wiscombe,2 and P. Pilewskie5

1Boston University, 2NASA GSFC, 3University of Maryland Baltimore County, 4Brookhaven National Laboratory, 5University of Colorado

Problem: To separate aerosol and surface contributions from airborne spectral measurements of surface reflectance.

- The poster shows how to retrieve surface spectral albedo for *direct illumination only* from spectral measurements of up- and downward fluxes above the vegetation under ambient illumination conditions (Fig. 1).
- Our approach is based on the canopy spectral invariant relationship: *the surface-to-leaf albedo ratio* \(A_{\lambda}/\omega_{\lambda} \) *is a linear function with respect to the surface albedo* \(A_{\lambda} \), see Fig. 2, i.e.,

\[
A_{\lambda}/\omega_{\lambda} = pA_{\lambda} + R_0,
\]

from which \(A_{\lambda} \) for *all wavelengths* can be retrieved (Fig. 3).

- Since the vegetation is highly sensitive to the angular anisotropy of the incident radiation, the difference between the retrieved and measured surface albedo (Fig. 4) is a signature of the aerosol optical properties (single scattering albedo, scattering anisotropy and optical depth). It also determines the ratio of direct to the total flux at the surface.