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Air Motions from Doppler Spectra

Method A Doppler Spectrum
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Main assumption: Liquid droplets s 7‘2 (‘J 2 "

trace vertical air motions due to Vp [m s-1]

their limited size.

An Example

Layer-averaged & height resolved vertical velocity, and turbulence
derived from the horizontal variance of radar Doppler velocity
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Aircraft comparisons during M-PACE

Vertical velocity (W) and turbulent dissipation rates (g).
Retrieval data are mean (symbol) and middle 90% of data (line)
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Retrieved Properties
During M-PACE

These distributions of cloud
properties are characteristic of single-
layer, low-level, autumn mixed-phase

stratus observed in Barrow, Alaska.

Cloud microphysical properties are

derived using a combination of radar
and microwave radiometer.

Mixed-Phase Cloud Properties
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Dependencies
Vertical velocity influences
cloud properties. For
increasing updraft strength:
* LWP, IWP, R, increase
« Liquid fraction decreases
« Liquid layer thickness
increases
+Adiabaticity increases
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microphysics are 0.6 — 10 km.

Summary

+ Vertical velocity can be derived from cloud radar; results
compare favorably with aircraft observations

« Typical autumn, Arctic mixed-phase stratus:

W =0.6 ms?i(up), LWP=150gm? IWP=20gm?
85% liquid fraction, R, = 45 um, ice fall speed=1ms™
+«» Dominant scales-of-variability for vertical motions and

¢ A conceptual model details the cloud life cycle by relating

vertical velocity to other cloud parameters. Limited ice forming

nuclei concentrations and ice particle fallout are important for
\iquid maintenance throughout the cloud life cycle.

N

A Conceptual Model

relating air motions and microphysics

updraft

Updraft
« Liquid grows to form a near
adiabatic profile
* RH ~ 100% in liquid cloud layer
« Cloud top lifts
« Ice particle nucleation within
liquid layer due to high RH;,
« Ice crystals grow to large sizes
« IWC maximizes near liquid base
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Neutral/Downdraft
« Liquid evaporates (but not
completely) becoming sub-
adiabatic
* RH < 100% in cloud layer
« Cloud top descends
» No new ice particle initiation
« Ice crystals fall out of liquid layer
(vertical stratification)
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