Finite Cloud Effects at the ACRF TWP Site
Patrick Taylor and Robert G. Ellingson
Dept. of Meteorology, Florida State University, Tallahassee, FL 32306

Introduction:
- Most GCMs use a cloud amount weighted average to calculate upward and downward fluxes, Eq. (1).
- Eq. (1) neglects (See Fig. 1):
 - Inhomogeneity of Cloud Microphysical Properties
 - 3D Cloud Field Bulk Geometry
 - Varying Cloud Thermodynamic Properties
- The difference in surface longwave forcing due to finite 3D clouds when compared to infinite clouds, referred to as (CSE) cloud side effect (i.e. (A) - (B) from Fig. 1), has been measured to be as much as 15 W m⁻² (Heidinger and Cox 1996).

Fig 1. This schematic illustrates the contributions to the surface flux from (A) a realistic non-isothermal cloud field with inhomogeneous optical properties and 3D geometry and (B) considering a Plane Parallel cloud field with homogeneous optical properties.

Data:
- Observations are taken at the ACRF TWP Site from June 1999 through May 2003 and obtained from the ARM Data Archive.
- These instruments are used to extract cloud field parameters using the frozen turbulence approximation. The cloud parameters are used as input in to the PCLoS Models to determine N_e.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Observations</th>
<th>Parameter(s) Extracted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceilometer</td>
<td>Cloud Base Height</td>
<td>Cloud Base Height, Cloud Base Length, N</td>
</tr>
<tr>
<td>ARSCL</td>
<td>Cloud Boundaries</td>
<td>Cloud Thickness</td>
</tr>
<tr>
<td>Radiosonde</td>
<td>Wind Speed</td>
<td>Cloud Base Length</td>
</tr>
<tr>
<td>Whole Sky Imager</td>
<td>Hemispheric Radiance</td>
<td>PCLoS, N, N_e</td>
</tr>
<tr>
<td>Pyrgeometer</td>
<td>Longwave Diffuse Downwelling Flux</td>
<td>N_e</td>
</tr>
</tbody>
</table>

Summary and Conclusions:
- 62 two-hour intervals of single-layer cumulus clouds are studied at the ACRF TWP site.
- The effective cloud fraction can be calculated using the PCLoS inferred from the Whole Sky Imager with some skill.
- The mean cloud side effect (CSE) in the longwave at the surface is 7.15 W m⁻² at Manus and 11.50 W m⁻² at Nauru. The larger observed CSE at Nauru coincides with a larger mean aspect ratio. The mean CSE at the ACRF TWP considering all cases is 8.07 W m⁻².
- The cloud side effect reported by Heidinger and Cox (1996) is very similar to the results presented here, despite the appearance of larger clouds at TWP. This is a result of two competing effects: (1) increased CSE with increased aspect ratio and (2) decreased CSE with smaller differences between clear and overcast downwelling fluxes.

Results:
- Mean Flux from Cloud Side Emission:
 - 7.15 Wm⁻² at Manus
 - 11.50 Wm⁻² at Nauru
- The effective cloud fraction is determined using PCLoS from the WSI. Pyrgeometer data and MDTERP longwave radiative transfer model are used to validate the PCLoS effective cloud fractions.
- The effective cloud fraction is determined using PCLoS from the WSI. Pyrgeometer data and MDTERP longwave radiative transfer model are used to validate the PCLoS effective cloud fractions.

Corresponding Author: Patrick Taylor
Email: ptaylor@met.fsu.edu
Phone: (850) 644-3340