Mixed-phase Arctic Clouds Simulated by a Cloud-resolving Model:

Comparison with Aircraft Observations and Sensitivity to Microphysics Parameterization

Yali Luo ^{1,2}, Kuan-Man Xu ², Hugh Morrison ³, Greg McFarguhar ⁴

¹ National Institute of Aerospace; ² NASA Langley Research Center; ³ National Center for Atmospheric Research; ⁴ University of Illinois at Urbana-Champaign

Objectives

- To evaluate the ability of a cloud-resolving model (CRM) to simulate mixed-phase stratiform (MPS) Arctic clouds:
- To explore the sensitivity of the CRM simulated MPS to microphysics parameterization.

Case and Evaluation Data

S Case Description:

In the period 9-14 October, 2004 there was east-northeast flow, which brought cold near-surface air from the sea-ice located about 500 km north over the warm open ocean that was adjacent to the northern coast of Alaska. The large ocean sensible and latent heat fluxes combined with large-scale

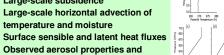
a 1. Composite visible om the NASA subsidence promoted a well-mixed Terra sa Single layer mixed-phase clouds were formed under these conditions. These clouds were then advected to the Alaskan coast where they were observed at the ARM NSA sites: Barrow and Oliktok Point (Fig. 1).

S Evaluation Data

The evaluation data used are the bulk properties of the MPS clouds that McFarquhar et al. (2007) derived from observations measured by instruments on the University of North Dakota Citation aircraft.

CRM Simulations

§ Model Description:


Anelastic dynamic framework

Either a one- or a two-moment bulk microphysics scheme A state-of-the-art δ-4 radiative transfer scheme Third-order turbulence closure

S Initial Conditions and Forcing:

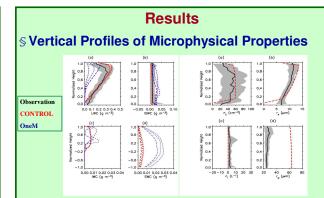
Initialized with an adiabatic profile of liquid water Large-scale subsidence Large-scale horizontal advection of temperature and moisture Surface sensible and latent heat fluxes

ice nuclei (IN) concentration

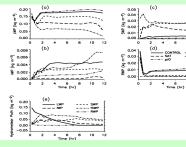
Sensitivity Tests:

Figure 2. Profiles of the initia ns and large-scale fo

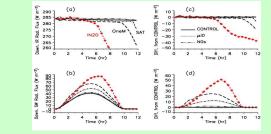
- OneM One-moment microphysics scheme of Lin et al. (L83) combined with the water-ice saturation adjustment scheme of Lord et al. (L84)
- SAT M05 combined with L84
- NOS Same as CONTROL except for using the constant intercept parameter of snow spectra as in L83


CONTROL Two-moment microphysics scheme of Morrison et al. (M05)

μi0 Same as CONTROL except for specifying the spectra shape parameter of cloud ice as zero rather than 5


IN20 Same as CONTROL except for increasing the IN concentration by 20 times (I.e. from 0.16 L-1 to 3.2 L-1)

Summary


- S-With the M05 two-moment microphysics scheme and the observed ice nuclei concentration (CONTROL), the CRM reproduced the magnitudes and vertical structures of cloud liquid water content, total ice water content, number concentration and effective radius of cloud droplets as suggested by the aircraft observations, but underestimated/overestimated the number concentration/size of ice crystals, respectively.
- S Using the L83 one-moment microphysics scheme (OneM) resulted in too little liquid water path (LWP) and too much ice plus snow water path.
- S A sensitivity test that used the same ice-water saturation adjustment scheme as in OneM produced cloud properties that were more similar to the OneM than the CONTROL.
- S Increasing the ice nuclei concentration to an unrealistic large value (factor of 20) forced the MPS clouds to become glaciated and dissignate, but the simulated ice number concentration agreed initially with the observations better.
- S The CONTROL predicted spatially varying values of the intercept parameter of snow size spectra (N₀) that were one order of magnitude smaller than the prescribed N_{0s} used in L83. A sensitivity test that prescribed the larger L83 N_{0s} resulted in 20% less LWP and 5 times larger snow water path (SWP) than the CONTROL.

S Vertically Integrated Water Contents

Surface Downward Radiative Fluxes

Selected References

- Luo, Y., K.-M. Xu, H. Morrison, and G. McFarquhar, 2007: Mixed-phase Arctic clouds simulated by a cloud resolving model: Comparison with ARM observations and sensitivity to microphysics parameterization. Submitted to J. Atmos. Sci.
- McFarguhar, G. M., G. Zhang, M. Poellot, J. Verlinde, G. Kok, R. McCov, T. Tooman, and A. J. Hevmsfield, 2007: Vertical variability of the phases, shapes, and sized of hydrometeors in single layer mixed-phase Arctic stratus clouds. Submitted to J. Atmos. Sci.
- Morrison, H., J. A. Curry, V. I. Khvorostyanov, 2005: A new double-moment microphysics para application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 1665-1677
- Acknowledgment: The work was supported by the DOE ARM Program and by the NASA MAP Program. Data were obtained from the ARM program archive.

Contact: v.luo@larc.nasa.gov or vali@nianet.org