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Introduction 
 
Mechanisms of ice formation in supercooled clouds that are too warm to allow the homogeneous 
nucleation of water remain poorly constrained by measurements (e.g., Cotton and Field 2002).  Ice mass 
and number concentrations have long been thought to exceed what can be quantitatively explained by 
simultaneous measurements of ice nuclei (e.g., Koenig 1963; Beard 1992).  In late 2004 at the 
Atmospheric Radiation Measurement program’s North Slope of Alaska site, the Mixed-Phase Arctic 
Cloud Experiment (M-PACE) Intensive Operation Period revisited this problem with state-of-the-art 
instrumentation on aircraft, ground, and satellite platforms.  Here we use ground and aircraft data to 
constrain numerical simulations of the October 9–10 single-layer mixed-phase boundary layer cloud 
case.  The simulations are carried out with a large-eddy simulation code (Stevens and Bretherton 1996; 
Kirkpatrick et al. 2006) with size-resolved microphysics (aerosols, liquid, and ice) (Jensen et al. 1998; 
Ackerman et al. 1995) and two-stream radiative transfer at 44 wavelength bands (Toon et al. 1989).  We 
focus specifically on understanding the phase, mass, and number size distribution measurements that 
were quality-controlled by the McFarquhar research group in order to evaluate various hypotheses for 
ice enhancement under the M-PACE conditions.  We note that it is especially difficult to evaluate ice 
number owing to the difficulty of identifying the phase of small particles and eliminating instrumental 
uncertainties associated with aircraft measurements.  Cloud particle images indicating small ice crystals 
that resemble laboratory specimens (e.g., Bacon et al. 2003), for instance, may be artifacts of large 
particle shattering on inlets.  Mass measurements are also subject to difficult uncertainties associated 
with particle size distribution (e.g., Korolev et al. 2004).  Our goal here is to take all available 
measurements provided to us this time and quantitatively evaluate consistent microphysical explanations 
for them. 
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Results 
 
All simulations were initialized with the specifications developed by the Cloud Modeling and 
Parameterization Working Group (science.arm.gov/workinggroup/cpm/scm/scmic5) for “Case B.”  In 
order to more carefully evaluate ice nucleation, we added prognostic ice nuclei (IN) to the model in the 
following manner.  In each grid box, they were initialized to the background observed value of 
approximately 0.2/L.  They were then assigned uniformly to an array of least easily to most easily 
nucleated and were assumed to be equally available in all four primary modes (Table 1).  When 
conditions were met to consume available IN of particular nucleability in a particular mode, IN were 
removed from the array and produced a concomitant number of ice, either from the aerosol or drop 
populations.  Remaining IN were then advected and transported as passive tracers for availability in 
subsequent time steps.  Multiplication via the rime-splintering and drop shattering mechanisms 
(Pruppacher and Klett 1997) was also included in the model, although neither made a significant 
contribution to ice number or mass.  Drop shattering was accounted for in the following manner:  
whenever drops larger than 50 µm in diameter froze by either contact nucleation or coalescence with ice, 
a small fraction were assumed to freeze in a manner that produced a total multiplication factor of 2, 
which was assumed to be an upper limit estimate of the drop shattering effect. 
 

Table 1.  Ice formation mechanisms represented in all simulations (primary modes and 
multiplication) and in sensitivity tests (other mechanisms). 
Mechanism T, C S Description 
Primary modes    
     Contact –4 to –14 — drop + IN(aerosol) → ice 
     Condensation –8 to –22 > Sw IN(aerosol) → ice 
     Deposition < –10 > Si IN(aerosol) → ice 
     Immersion –10 to –24 — drop + IN(drop) → ice 
Multiplication    
     Rime-splinter –3 to –8 — 250 collisions → ice 
     Drop shattering < 0  freezing drop → ice 
Other mechanisms    
     Evaporation nuclei < 0 > Sw evaporated drop → IN(aerosol) 
     Evaporation freezing < 0 > Sw evaporating drop freezes 
     Ice preactivation < 0 > Si evaporated ice → IN(aerosol) 

 
In the base case simulation (including the primary nucleation modes and multiplication mechanisms 
listed in Table 1), almost no ice was formed (Figure 1a versus 1b).  However, we were able to better 
match observations if one in 10,000 evaporating drops produced an ice nucleus (Rosinski and Morgan 
1991) (Figure 1a versus 1c), or if evaporating drops were assumed to freeze during the evaporation 
process (Cotton and Field 2002) (Figure 1a versus 1d), or if every ice crystal that evaporated (including 
secondary ice) yielded an ice nucleus that was “pre-activated” (e.g., Roberts and Hallett 1967) and they 
were permitted to build up in the boundary layer over a number of hours without any removal processes  
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Figure 1.  M-PACE data (a) compared with model results with 0.2/L IN (b), evaporation nuclei (c), and 
drop freezing during evaporation (d). 
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except activation (not shown here).  We also considered the effect of charge-enhancement of 
evaporation nuclei (Tinsley et al. 2000) that could increase the likelihood of small drops freezing 
(Tripathi and Harrison 2002), but once phoretic forces were properly calculated during the simulation, 
these factors did not influence results significantly. 
 
Summary and Discussion 
 
These preliminary results establish our initial conclusions that background ice nuclei probably are not 
sufficient to sustain observed ice mass and number under mixed-phase conditions at low drop number 
concentrations, as has been noted by previous authors (Rangno and Hobbs 2001).  We have identified 
three possible microphysical mechanisms that may operate to explain the observations, providing 
additional ice mass and number.  Future work will be focused on evaluating differences between the 
simulations with these three mechanisms, in collaboration with Greg McFarquhar and Gong Zhang. 
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