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Introduction 
 
Forecasts of decadal climate change at subcontinental scales made by global climate models (GCMs) are 
currently too uncertain to be useful to policy makers.  For example, the forecasts of global mean surface 
temperatures in the current Intergovernmental Panel on Climate Change (IPCC) Special Report on 
Emissions (SRES) A1B scenario show an agreement across 15 models of about ±0.75 K in warming of 
the global mean temperature after 100 yearr.  At the subcontinental scale, the disagreement in surface 
temperatures at high latitudes can range as large 15 K in extreme cases for the 100-year forecast. 
Forecasts of precipitation and extreme weather show even more variation for these IPCC emission 
scenarios. 
 
The disagreement between low cloud representations in models manifests itself in Atmospheric 
Radiation Measurement (ARM) data in a unique way.  Measurements from the ARM atmospheric 
emitted radiance interferometer (AERI) instrument at the Southern Great Plains (SGP) site strongly 
constrain low cloud behavior.  For example, they indicate that NWP models predict liquid water paths 
for low clouds that are three times the observed value (Sengupta et al. 2004).  Measurements of top of 
the atmosphere radiance have revealed that inadequate cloud representation in climate models causes the 
radiative balance to lack realistic long-term variability (Cess et al. 2001; Wielicki et al. 2002).  Upward 
looking radiance measured from the surface, as by AERI, is sensitive to a different portion of the  
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atmospheric state than satellite measurements, providing detailed information from the surface up to 
about 3 km.  The AERI radiances are therefore well-suited to investigating the failure of models to 
produce realistic distribution of low-level clouds. 
 
The key requirement for developing an accurate climate forecast is that the forecast model must contain 
the correct relationship between anticipated forcings and the response in climatological variables of 
interest.  This relationship is not captured by the mean statistics of the climate system, but rather by the 
second moment statistics, as defined by the covariances of observable properties of the climate system. 
This concept derives from a formulation of the fluctuation-dissipation theorem applied to the climate by 
Leith (1975).  We seek a methodology that extracts the required covariances from climate observations 
in a form which allows for the testing and improvement of climate models.  This method is provided by 
Linear Inverse Modeling (LIM), a technique which extracts the dynamical relationship between climate 
variables directly from observations (Penland and Magorian 1993).  The power of LIM derives from its 
ability to obtain dynamics from any well-observed, representative measurement of the climate system.  
It has been demonstrated in other climate applications using a variety of datasets, and it can also be 
applied directly to improving low level cloud parameterizations using ARM radiation measurements, 
entirely without the use of a retrieval algorithm.  In this work, we choose to probe the dynamics of the 
AERI radiances.  These radiances contain detailed information about the distribution of temperature, 
water vapor and clouds in the boundary layer.  The correctly determined dynamical relationship among 
these variables provides a powerful constraint on the representation of the boundary layer in a climate 
model.  This constraint must be satisfied for any model to forecast future climate credibly. 
 
The Atmospheric Emitted Radiance Interferometer 
 
The AERI acquires calibrated spectra of downwelling infrared radiation at a nominal spectral resolution 
of 1 wavenumber (∼0.48 cm-1 unapodized) from 520 cm-1 to 3020 cm-1 (3.3 to 19.2 µm), yielding 
5000 channels per measurement.  The spectral calibration (wavelength scale) is known to better than 
0.3 ppm (3-sigma).  The standard zenith sky view is integrated over 3.5 min. within a field of view 
(FOV) of 15 mrad half angle.  A full description of the design and radiometric calibration of the 
instrument is available in Knuteson et al. (2004).  A 10-year dataset of AERI measurements recorded 
at the surface is contained in the Department of Energy ARM Data Archive.  The measurements were 
recorded at 8-10 minute intervals during this period. 
 
The AERI radiances provide high vertical resolution profiles of water vapor and temperature to 3 km 
(Feltz et al. 2003).  In regions of strong atmospheric absorption around 700 cm-1 and from 
1400-1600 cm-1 the spectrum is dominated by temperature a few meters from the instrument.  Water 
vapor lines reveal the structure of the water vapor profile between 1100-1400 cm-1 and below 600 cm-1.  
The atmospheric window region (800-1000 cm-1) is dominated by sensitivity to clouds.  Outside of the 
opaque spectral regions, variability is dominated by the presence or absence of clouds.  The high 
spectral resolution provides sensitivity to cloud microphysics. 
 
All of the above features make AERI data an attractive dataset for testing climate models.  The high 
temporal resolution captures the interplay of water vapor, temperature, clouds and winds in the 
lowermost 3 km of the atmosphere.  This interplay in turn modulates the surface energy budget, which is 
an important component of the cloud-radiation feedback and the overall climate.  
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Producing Atmospheric Emitted Radiance Interferometer-like 
Radiances from Global Climate Models 
 
Traditional evaluations of climate models with spectrally resolved radiance measurements have been 
performed through retrievals of the canonical meteorological variables.  An advantage of the methods 
developed in this study is that they work directly on the calibrated radiance observations.  It is a 
straightforward matter to calculate model radiances that can be directly compared to the AERI 
measurements.  The climate models are run, archiving profiles of temperature, humidity, and clouds, at a 
temporal resolution of eight times per day or higher.  Combined with trace gas profiles, the data provide 
a time series of inputs to the moderate-resolution atmospheric radiance and transmittance model 
radiation code, which produces a time series of resolved infrared radiance spectra.  The spectra are 
calculated over the spectral interval from 1 cm-1 to 3300 cm-1, fully overlapping the both channels of the 
AERI measurements.  These examples are confined to AERI channel 1, covering from approximately 
520 cm-1 to 1700 cm-1, and accounting for over 80% of the infrared radiance emitted by the atmosphere.  
For the investigation of the Geophysical Fluid Dynamics Laboratory (GFDL) model shown here, the 
AM2 model (GFDL’s Global Atmosphere Model Development Team 2003) was forced with the Hurrell 
sea surface temperatures (SSTs) for the period from September 2000-September 2002.  Profiles of ozone 
and aerosols are derived from the Mozart chemical transport model. 
 
Linear Stochastic Modeling:  An Approach to Model Assessment 
and Comparison 
 
Second moments of meteorological variables of the climate system are strongly related to the sensitivity 
of that system to external forcing.  This is an application of fluctuation-dissipation theory as formalized 
by Leith (1975).  Accordingly, the sensitivity of a climate variable uα to set of constant, infinitesimal 

forcings uβδ &  is given by: 
 

 
( ) ( ) ( )

t
u t g t t u t dtα αβ βδ δ

−∞
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where ( )gαβ τ , the α,β element of matrix g(τ), in the limit of Gaussian statistics, is specified by: 
 

  (2) 
1( ) ( ) (0)τ τ −=g U U

 
Here ( )τU  represents the lagged covariance matrix of the variables uα at lag time τ.  Hence the 
sensitivity of the uα to forcing by uβ is proportional to the covariance of uα and uβ.  The sensitivity of the 
climate may therefore be measured directly by appropriate observations of the short-term fluctuations of 
the climate that constitute natural variability.  Cionni et al. (2004) show that the value of the sensitivity 
of a GCM to external forcing is predicted correctly by fluctuation-dissipation theory.  
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Empirical Orthogonal Functions:  A Basis Set for Atmospheric 
Emitted Radiances Interferometer Radiances 
 
A convenient technique for representing the information contained in the second moment statistics is 
that of empirical orthogonal function (EOF) analysis.  We have applied this type of analysis to spectrally 
resolved infrared radiances (Haskins et al. 1997; Haskins et al. 1999; Huang et al. 2002), uncovering 
essential features of atmospheric behavior.  In Figure 1 we show the first four principal components 
(PCs) of variability in AERI spectra as seen in the time series of measurements from the SGP site for the 
period 1998-2003, and in AERI-like radiances calculated for GFDL for September 2000 –
September 2002.  Principal components are EOFs scaled by the square root of their associated 
eigenvalues.  The first principal component is the signature of a cloud and accounts for 77.4% of total 
variance in the infrared.  The second principal component shows a pattern of anticorrelation between the 
warming near the surface and cooling aloft and accounts for 20.8% of the total variance in the infrared. 
The model PCs compare favorably with the measurement PCs in light of the large difference between 
PCs derived from satellites and models (Huang et al. 2002).  Taken together, the first two PCs contribute 
two pieces of information on low clouds:  whether or not a cloud is present, and what the height and 
thickness of the cloud is.  The third and fourth PCs are related to the fluctuations in the atmospheric 
column due to the diurnal and semidiurnal cycle. 
 

 
Figure 1.  Principal components (PCs) calculated for time series of AERI SGP and simulated GFDL.  
The AERI spectra are three hour averages, the model spectra are calculated from eight times daily 
model output.  The excessive variability of the model radiances in captured in the second PC.  These 
PCs account for 77.4%, 20.8%, 1.0%, and 0.4% of the total variance, respectively. 
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The timescales associated with the variability captured by these principal components may be inferred 
by projecting the EOFs onto the time series of radiances, and analyzing the resulting time series of 
coefficients.  Inspection of the time series for these coefficients for EOF1 and EOF2 clearly reveals a 
substantial contribution of annual variability to the first two EOFs, as shown in the upper panel of 
Figure 2.  This annual variability causes the existence of clusters in the probability distribution function 
of these EOFs, which will be shown below to complicate the process of uncovering the system 
dynamics.  The contribution of these periodic fluctuations may be calculated using singular spectral 
analysis (Vautard and Ghil 1989).  Singular spectral analysis is a technique that determines an optimal 
basis set for a time series, capturing the variability in fewer basis functions than fourier analysis. 
Applying singular spectral analysis (SSA) to the time series of EOF1 and EOF2 coefficents reveals that 
the first two singular spectra, possessing a period of approximately one year, accounts for 27.0% of the 
variability for EOF1 and 48.3% for EOF2.  By projecting these singular spectra onto the time series, a 
similar set of coefficients is created which provides an optimal reconstruction of the original time series. 
Applying this procedure for the first two singular spectra allows an approximate removal of the annual 
cycle from the time series of EOF1 and EOF2 coefficients, as shown in the lower panel of Figure 2. 
 

 
 
Figure 2.  The time series of coefficients for EOF1 and EOF2 from the AERI SGP in the top panel show 
the contribution of the seasonal cycle to the dynamics of the radiance spectrum.  The time series for 
EOF2 is displaced above the EOF1 time series for clarity.  The seasonal cycle may be reduced by 
subtracting the leading two singular spectra (found via SSA, see text) from the time series, as shown in 
the lower panel. 
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A Review of Linear Stochastic Modeling 
 
Although ultimately governed by a highly nonlinear system, the dynamics of perturbations to the climate 
state φ about the equilibrium point of the statistically stationary climate are approximately governed by 
the linear stochastic equation: 
 

 
( )d t

dt
φ φ ε= +A F

 (3) 
 
where A is a linear operator and Fε(t) is a stochastic forcing accounting for the fast nonlinear processes 
(Farrell and Ioannou 1996). Climate statistics are predicted with surprising accuracy by this linear 
stochastic modeling (Farrell and Ioannou 1995; Zhang and Held 1999; Whitaker and Sardeshmukh 
1998), admitting powerful linear analysis methods.  The accurate approximation to statistical dynamics 
provided by such linear stochastic systems motivates the attempt to obtain approximations to the above 
equation from AERI observations for the purpose of comparison with model behavior. 
 
Zero time-lag statistics as revealed by the EOFs above are insufficient to evaluate the dynamic processes 
underlying the distribution of boundary layer clouds.  LIM is well-suited to determining the character of 
this process from observations, extracting the system dynamics A directly from the lagged covariances 
U calculated from observations such as AERI.  How the climatology of complex and turbulent 
atmospheric flows is amenable to such a reduction was examined by DelSole and Farrell (1996) who 
were able to extract from nonlinear simulations of a two-layer baroclinic channel flow the effective 
linear operator that was controlling the climatology of the channel flow.  DelSole and Hou (1999) 
extended these methods to demonstrate the accuracy of LIM in inverting the GCM time series for the 
climatology of a full hemispheric GCM.  Additionally, successful modeling of the intraseasonal 
variability of the midlatitude atmosphere in the traditional variables of velocity and temperature, and of 
El Nino-Southern Oscillation dynamics in the SST have been achieved with these methods (Farrell and 
Ioannou 1995; Penland and Magorian 1993).  Of particular interest to us is that the LIM method is not 
confined to traditional variables such as velocity and temperature; it can be applied to obtain intrinsic 
dynamics of a system in any variable.  The advantage of this approach is that it provides information on 
the primary structures of the system response and their temporal variability together with a link among 
the structures in the form of a dynamical system.  We believe that analysis of the intrinsic dynamics of 
the radiance spectrum captures much more information on the spectra and their temporal variability than 
an analysis of quantities retrieved from the radiation spectrum.  Comparison among models and between 
models and data can be sensitively made by contrasting their structure and dynamics using this method. 
 
LIM provides a convenient framework for comparing model and observed dynamics, obtaining the 
matrix of the intrinsic dynamics, A, and an equivalent stochastic forcing matrix, F, in the dynamical 
system described by equation 3.  The dynamics are identified from observations of the covariance and 
lag covariance of φ denoted by C(0) and C(τ), respectively, as follows: 
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Here φ refers to resolved radiances from AERI observations and calculated from a historical SST run of 
the GFDL AM2 model.  We wish to uncover the intrinsic dynamics of the AERI radiances, expressed as 
a time series of EOFs.  By projecting the time series of AERI radiances on to the leading EOFs, we 
represent a very large fraction of the variability in the radiances in a space of drastically reduced 
dimension.  For this study, only the first four EOFs are kept.  The dynamics are then obtained by 
calculating the matrix A from the covariances of this four dimensional time series according to 
equation 2.  For ease of visualization, the dynamics are obtained for two EOFs at a time, resulting in a 
2 x 2 matrix.  
 
Despite the good agreement between the model and measured EOF3 and EOF4 shown in Figure 1, the 
model dynamics are substantially different from the intrinsic dynamics of the measurement, as shown in 
Figure 3.  The dynamics obtained from LIM are represented as a vector field in Figure 3 and Figure 4. 
The streamlines in this vector field show the mean temporal evolution of the radiances projected into the 
space of the EOFs.  This trajectory of the atmosphere in time is illustrated in Figure 4 by the points 
superimposed on the vector field, which correspond to three AERI observations each separated by three 
hours.  The plot of the three radiance spectra in Figure 4 shows how the deviation of these AERI spectra 
from the mean value, projected into the space of EOF3 and EOF4, develops over the course of six hours. 
Although it is convenient to visualize this dynamics in two dimensions, LIM can obtain a higher-
dimensional dynamics, capturing the coupled evolution in time of the dominant degrees of freedom in 
the atmosphere.  A powerful characteristic of LIM is that it can uncover correlated structures among 
EOFs, which are forced to be uncorrelated at zero time lag.  
 

 
Figure 3.  Despite the similarity of the model simulation and observed radiances revealed by the 
comparisons of the third and fourth PCs in Figure 1, substantial differences exist in the underlying 
dynamics of the atmosphere, as shown by the dynamics obtained with LIM.  The left hand panel, which 
represents the linearized operator A for EOF3 and EOF4 in the SGP radiances, reveals a diffusive 
dynamics.  The dynamics of the GFDL model as represented by the vector field in the right hand panel 
show that excitations of EOF3 and EOF4 show simple contraction back to equilibrium. 
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Figure 4.  The dynamics of the EOF3 and EOF4 in the AERI radiance time series may be visualized as 
a vector field, as shown in the lower panel.  The evolution of the radiance over a six-our period is 
indicated by the triangles superimposed on the vector field, and labeled “t=0”, “t=3”, and “t=6.”  The top 
panel indicates the sum of the EOF3 and EOF4 components of the radiance at these time steps, 
matched to the corresponding points in the vector field by the dotted lines.  As can be seen from this 
figure, the system will tend to evolve along the streamlines of the vector field defined by the equivalent 
linear operator A. 
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LIM reveals additional information is contained in the temporal dynamics of the AERI radiances.  The 
same physical influence seems produce the radiance EOFs in both the AERI measurements and the 
model simulations, judging by the similarity in their PCs.  The differences between the model and 
observations are only uncovered by obtaining and comparing the dynamical model controlling them. 
Because of the sensitivity of the AERI radiances to the vertical structure of temperature and water vapor 
up to 3 km, along with the height and thickness of clouds and the presence of aerosols, this dynamical 
system captures the subgrid scale physical processes controlling the model distribution of low-level 
clouds and precipitation.  The comparison of the LIM and the underlying dynamics of this complex 
turbulent system can be used to identify and improve boundary layer parameterizations (Del Sole and 
Farrell 1998). 
 
Conclusions 
 
We have analyzed the second moment statistics of downwelling infrared radiation spectra measured by 
the ARM AERI instrument at the SGP site.  We have applied EOF analysis to extract the dominant 
structures of atmospheric variability, and reduce the dimensionality of the time series of radiance data. 
Using the EOF to produce a reduced representation of the AERI data, we have applied LIM to obtain the 
intrinsic dynamics.  These dynamics capture the coupling of temperature, water vapor and clouds in the 
lower atmosphere.  
 
Because of the relationship between cloud processes and the radiation budget, correctly reproducing this 
dynamical behavior is essential to accurate decadal-to-centennial scales forecasts of future climate.  By 
bringing the dynamics of temperature, water vapor and clouds of the model into agreement with the 
dynamics revealed from the observations by LIM, the model representation of clouds and associated 
radiative processes will be improved.  These techniques provide a rigorous test for climate model 
performance that exploit the dense information content of the radiance measurements themselves, and 
suggest a path towards model improvement. 
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