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Introduction 
 
Different types of clouds are usually governed by different cloud dynamics processes and have different 
microphysical properties, which results in different cloud radiative forcings (Hartmann et al. 1992; Chen 
et al. 2000).  Climate changes can result in changing frequency of cloud type and changing properties of 
a cloud type.  The combination of them determines the change of the role of clouds in the Earth water 
and energy cycles.  We might face difficulties to accurate predict future climate change until climate 
models can properly represent the processes and feedback mechanisms of controlling different cloud 
types and their properties.  Moreover, each of published cloud microphysical properties retrieval 
algorithms is only applicable to given type clouds because assumptions used in each algorithm are only 
valid for given type clouds.  Therefore, cloud classification products not only supports cloud studies 
which need to group clouds according to cloud types, but also provides necessary information to 
implement different retrieval algorithms to generate integrated cloud microphysical products. 
 
Classifying clouds into categories based on type is an important task for cloud remote sensing and global 
cloud climatology studies.  Algorithms based on different cloud spectral, textural, and physical features 
from satellite passive sensors have been developed for cloud classification (Welch et al. 1992; 
Tovinkere et al. 1993; Bankert 1994; Luo et al. 1995; Rossow and Schiffer 1999).  The International 
Satellite Cloud Climatology Project (ISCCP) approach (Rossow and Schiffer 1999) uses the 
combination of cloud top pressure and cloud optical depth to classify clouds into either cumulus (Cu), 
stratocumulus (Sc), stratus (St), altocumulus (Ac), altostratus (As), nimbostratus (Ns), cirrus, 
cirrostratus, or deep convective clouds.  However, with more long-term ground-based remote sensing 
cloud studies underway, algorithms to classify cloud type using this approach are a necessity.  Duchon 
and O’Malley (1999) studied the possibility of classifying clouds according to ground- based solar flux 
measurements.  Their results show an accuracy of classification below 50%.  Williams et al. (1995) 
developed an algorithm to classify precipitating clouds into either stratiform, mixed stratiform, 
convective, and deep or shallow convective clouds using 915-MHz wind profile data. 
 
Wang and Sassen (2001) presented aalgorithm to classify clouds into either St, Sc, Cu, Ns, Ac, As, deep 
convective, or high cloud by combining ground-based active and passive remote sensing data.  The class 
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of high cloud includes cirrus, cirrocumulus, and cirrostratus, and deep convective cloud represents 
cumulus congestus and cumulonimbus.  
 
Here, we present an improved cloud classification algorithm using active and passive remote sensing at 
the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site.  There are two main 
improvements on our published cloud type classification algorithm by including cloud phase 
determination and using fuzzy logic classification method.  Cloud phase is an important cloud property, 
and an integrated cloud phase determination is implemented in the algorithm by combining atmospheric 
temperature, Raman lidar depolarization ratio, radar reflectivity factor, micropulse lidar (MPL) 
backscattering coefficient, and liquid water path (LWP) from microwave radiometer (MWR).  To 
improve the flexibility of classification algorithm, we combine role-based and fuzzy logic classification 
methods, which allow the algorithm to output cloud type as well as the confidence level of cloud type, 
and is easy to modify for the Tropical Western Pacific (TWP) and the North Slope of Alaska (NSA) data 
streams. 
 
Measurements Used for Cloud Classification 
 
SGP CART site provides the best ground-based integrated observations in the world.  The millimeter 
wave cloud radar (MMCR) provides radar reflectivity and mean Doppler velocity profiles for most of 
clouds in the troposphere.  Raman lidar provide not only water vapor profile, but also cloud properties 
including backscattering coefficients and lidar linear depolarization ratio.  MWR provides column-
integrated water vapor and liquid water.  IR radiometers measure the total Tb of the atmospheric column 
from gases and clouds combined.  MPL measurements also can be used to estimate cloud backscattering 
coefficient. 
 
We classify clouds by using vertical and horizontal cloud properties, the presence, or absence of 
precipitation, LWP, and downward IR brightness temperature (Tb).  Vertically pointing lidar and radar 
provide a time series of vertical cloud profiles, and the vertical and horizontal extent of clouds represent 
important information for differentiating cloud types.  In addition to active remote sensing data, IR 
radiometer and MWR measurements are also incorporated into our scheme.  Although the Tb due to the 
cloud can be estimated from this and supplementary data, the standard deviation of Tb, which is 
calculated from high frequency (~0.05Hz) measurements, is found to be more useful for identifying 
cloud type.  For clear-sky, Tb changes very slowly with time, primarily in accordance with column water 
vapor changes.  However, it changes in a different manner for different types of clouds because of the 
fundamental horizontal inhomogeneities and fractional coverage of clouds, and the change of cloud base 
height with time.  LWP retrieved from MWR measurements is another important layer-integrated cloud 
property. 
 
Methodology 
 
Role-based classification methods, which assign different threshold values to characteristic parameters, 
are simple and easy to use methods, but the results are sensitive to the selection of the thresholds.  
Instead of using Boolean logic, the proper use of fuzzy logic can improve the results of cloud classifica-
tion (Penoloza and Welch 1996).  The approach of using neural networks to classify cloud type in 
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satellite imagery has shown recent success (Welch et al. 1992; Bankert 1994).  The network is trained on 
selected spectral, textural, and physical features associated with expertly labeled samples.  The trained 
network is subsequently applied to unknown cloud samples.  However, these new classification 
techniques can not guarantee better performance, which depends on how properly designed the classifier 
is and the selection of features (Tovinkere et al. 1993).  The rule-based classification method was 
selected in our initial study for its simplicity (Wang and Sassen 2001).  However, it lacks flexibility to 
deal with some difficult situations and different measurement fields at different time (missing data 
issue).  Here, we try to combine role-based and fuzzy logic-based classification method as schematically 
presented in Figure 1.  Fuzzy logic-based classification also gives a chance to provide a measure for the 
quality of outputs during the defuzzifier process. 
 

Knowledge  
 Rules; Fuzzy Sets

Inputs Fuzzifier Process  
Logic 

Defuzzifier Outputs

Rule based Decision Tree 

 
 

Figure 1.  Schematic diagram for the combination of rule-based and fuzzy logical based classification. 
 
Fuzzy sets are basics for fuzzy logic-based classification.  Fuzzy set allows partial membership states.  
Ordinary, or crisp, sets have only two membership states:  inclusion and exclusion; fuzzy states allow 
degrees of membership as well.  Though there is an apparent external similarity between fuzzy logic and 
probability, their differences are distinct.  Fuzzy logic is calculus of compatibility.  Unlike probability, 
which is based on frequency distributions in a random population, fuzzy logic deals with describing the 
characteristics of properties.  It describes properties that have continuously varying values by associating 
partitions of these values with a semantic label.  Much of the descriptive power of fuzzy logic comes 
from the fact that these semantic partitions can overlap.  This overlap corresponds to the transition from 
one state to the next.  These transitions arise from the naturally occurring ambiguity associated with the 
intermediate states of the semantic labels.  Examples of Fuzzy Sets related to cloud properties, such as 
cloud temperature, height, geometrical thickness, and cover are given in Figure 2. 
 
We use the following strategy to classify clouds.  First, cloud masks (from cloud boundaries) are used to 
find a cloud cluster according to their persistence in the horizontal (i.e., time) and vertical directions.  A 
search will stop when a systematic change in cloud properties, such as cloud thickness, horizontal 
inhomgeneity, and cloud base or top height, is detected.  To better consider the real situation, a 2-min 
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Figure 2.  Examples of fuzzy sets. 
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break is allowed in a cluster.  If a detected cloud cluster originally lasts less than 1-h, it will be forced to 
extend at the same height range until it is equal to or longer than 1-h to counting cloud horizontal 
inhomogeneity in ground-based measurements.  Therefore, a cloud cluster permits spatially broken 
cloud fields. 
 
Once a cloud cluster is found, the mean cloud base and top heights, cloud phase, horizontal extend, 
cloud fraction, as well as the occurrence and intensity of precipitation, are determined.  Then these 
properties are inputed to a combined role-based and fuzzy logic-based classifier to provide a cloud type 
and confidence level for the cloud cluster.  The flowchart of the method is given in Figure 3. 
 
Cloud phase is an important cloud property and a very useful parameter for cloud classification.  
Nonetheless, it is difficult to provide in many circumstances.  Lidar depolarization ratio is an effective 
measurement for cloud phase discrimination (Sassen 1991; Wang and Sassen 2001).  One weakness of  
 

 Inputs 
ARSCL product:sgparscl1clothC1.c1.
Raman lidar: sgprlC1.a0., sgprlC1.a1.
MPL:sgpmplC1.a1 
MWR:sgp1mwravgC1.c1. 
Merged sounding:    

Cloud cluster finder 
Cloud Feature Generator 

Cloud layer properties: Cloud base and top; Cloud temperature; Cloud Phase, Ze; 
Cloud Thickness; Cloud homogeneity; Cloud cover; Precipitation intensity and duration; 

Horizontal extend 

Combined role-based and fuzzy 
logic-based cloud type classifier

Outputs-for each layer 
Cloud type with confidence level; cloud phase; cloud boundaries; others 

Memberships for each cloud type: High cloud, As, St, Sc, Cu, 
Ns, and deep convective cloud. 

 
 

Figure 3.  The general structure of cloud type classification algorithm. 
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lidar is that it can not penetrate optically thick clouds to provide measurements for upper cloud layers.  
To provide continuous cloud phase estimation, we are trying to develop an integrated cloud phase 
identification approach by combining atmospheric temperature, Raman lidar depolarization ratio, radar 
reflectivity factor, MPL backscattering coefficient, and LWP from MWR.  The general steps are given 
in Figure 4.  First, cloud temperature is used for the first cut.  If cloud base temperature is colder than –
40°C, it is ice cloud.  On the hand, if cloud top temperature is warm than 0°C, it is water clouds for sure.  
The second step is to use available Raman lidar depolarization ratio measurements to discriminate cloud 
phase.  Due to the limited penetration depth of lidar in the optically thick clouds, using LWP measure-
ments to adjust cloud phase based on lidar depolarization measurements is important at some situations.  
For example of optically thick mixed-phase cloud, where optically thick ice layer below and water 
dominated mixed layer above, lidar may not be able to detect water signal, therefore, we may classify 
the layer as ice cloud.  However, detectable LWP from MWR can provide information to identify water 
within the layer in these situations.  Then, we can accordingly adjust the cloud phase as mixed-phase if 
water exists. 
 

First cut using cloud temperature

Depolarization Ratio from Raman Lidar

LWP adjustment

Lidar backscattering + Radar
Reflectivity 

Temperature + Lidar backscattering or 
Radar Reflectivity 

 
 

Figure 4.  The general steps of integrated cloud phase identification. 
 
For situations without lidar depolarization measurements, combining lidar backscattering and radar 
reflectivity factor give us some useful clues for cloud phase.  Because of different microphysical 
properties (size and number concentration) for different phase clouds, lidar and radar signal show 
different characteristic features.  For supercooled water clouds, lidar usually detect strong signal, but 
radar only has weak signal or fail to detect it because of small droplet size.  For mixed-phase cloud, both 
lidar and radar detects strong signals.  For ice clouds, lidar signal is weak or moderated, but radar signal 
may have a large variation.  Based on a date set with cloud phase identified from Raman lidar 
measurements, we found these differences are statistically robust.  When there is only lidar or radar 
measurement available, we only can combine it with temperature information for cloud phase 
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determination.  These five general steps are implemented in the code, but some details are still working 
issues.  This approach will be improved by analysis more SGP data. 
 
Examples of Classification 
 
To give a more information about how fuzzy logical based classification works, the following tables 
gives two examples.  Based on the inputs, we will have different memberships (between 0 and 1) for 
different fuzzy sets.  The membership for different cloud type can be between 0 and 1 too.  For the first 
case, we have membership 1 for high cloud, and 0 for the others.  Therefore, we are confident about the 
output.  The second case is more complicated as there are two cloud types with non-zero memberships.  
In the de-fuzzy process, we output a cloud type, which has the highest membership, and confidence 
level given by the moralized membership.  However, there is option to output both cloud types with 
different confidence levels. 
 

 Base_H        Top_H        dH              Base_T      Top_T     Cloud Fraction  Phase  
8.52818      10.1073      1.57921     -53.0121     -63.0221      1.00000      3.00000 
Base temperature : cold, moderate, warm        1.00000     0.000000     0.000000 
Cloud base height: Low, Mid, High       0.000000     0.000000      1.00000 
Cloud thickness: Thin, Moderate, Thick       0.000000      1.00000     0.000000 
Cloud cover: Scattered, Moderate, Overcast      0.000000     0.000000      1.00000 
Cloud horizontal extend : Isolated, Moderate, Extended       0.000000      1.00000     0.000000 
high_M,      As_M,          Ac_M,        St_M,       Sc_m,          Cu_M,        Ns_M,           Deep_M 
1.00000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000     0.000000    

Base_H        Top_H        dH              Base_T      Top_T     Cloud Fraction  Phase  
7.47600      8.26350     0.787620     -38.8858     -43.7634      1.00000      3.00000 
Base temperature : cold, moderate, warm       0.888580     0.111420     0.000000 
Cloud base height: Low, Mid, High       0.000000     0.262000     0.738000 
Cloud thickness: Thin, Moderate, Thick       0.589114     0.410886     0.000000 
Cloud cover: Scattered, Moderate, Overcast      0.000000     0.000000      1.00000 
Cloud horizontal extend : Isolated, Moderate, Extended       0.000000      1.00000     0.000000 
       high_M,      As_M,          Ac_M,        St_M,           Sc_m,          Cu_M,        Ns_M,           Deep_M
     0.738000     0.262000     0.000000     0.000000     0.000000     0.000000     0.000000     0.00000 

Inputs 

Member-
ships of 
fuzzy sets 
 Outputs 

 
 

The time-height display of inputs and outputs for April 12, 2000, is presented in Figure 5.  For this case, 
we have all measurements from instruments we used. 
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Figure 5.  An example of inputs and outputs for cloud classifications on April 12, 2000. 
 
Results for March 2000 
 
The algorithm is tested based on the data of 2002 from SGP CART site.  Results for March 2000 
intensive observation period (IOP) are given in Figure 6, which show that the algorithm works 
reasonable well. 

8 



Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 

 
 

 
 

9 



Fourteenth ARM Science Team Meeting Proceedings, Albuquerque, New Mexico, March 22-26, 2004 
 

 
 
Figure 6.  Time–height display of MMCR Ze, MPL return power, Raman lidar scattering ratio (LSR) and 
depolarization ratio, and classified cloud types for March 2000 IOP. 
 
Summary 
 
The cloud classification algorithm is improved by implementing a combined fuzzy logic based and role-
based classification method and a better cloud cluster analysis.  An integrated cloud phase identification 
is developed and tested to provide better cloud phase information.  The vision 0 code is tested based on 
whole year data of 2000.  But many improvements still are need, for example, we need to fine-tune the 
membership function of fuzzy sets based on more data at SGP CART site.  Therefore, suggestions for 
improvements are highly welcome.  The CD of initial results for year of 2000 was distribute during the 
meeting, and are available form authors upon request.  The algorithm will test extensively with multiple-
year SGP CART site data, and then it will be modified for TWP and NSA CART site data streams. 
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