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Abstract 
 
We present a method on how to derive an underlying mathematical (statistical or model free) equation 
for a liquid water path (LWP) signal directly from empirical data.  The evolution of the probability 
density functions (PDFs) from small to large time scales is explicitly derived in the framework of 
Fokker-Planck equation.  A drift and a diffusion term describing the deterministic and stochastic 
influences on the non-Gaussian fat tails of the liquid water probability distributions are obtained from 
empirical data. 
 
Introduction 
 
Knowledge of space-time distribution of liquid water is of paramount importance for the global 
circulation models.  However, these models contain no parameterization of the distribution of liquid 
water in a grid box.  We present a method on how to derive an underlying mathematical (statistical or 
model free) equation – the Fokker-Planck equation that governs time dependent distributions of 
fluctuations at different time delays starting from empirical data of a LWP.  As it is pertinent to natural 
sequences, the LWP signal is non-stationary with highly irregular and clustered fluctuations due to a set 
of various influences over different time and space scales.  Thus, it is of interest to distinguish and 
quantify from first principals the deterministic and stochastic influences on the LWP signal in stratus 
clouds.  It is known that two equivalent master equations govern the dynamics of a system, i.e., the 
Fokker-Planck equation and the Langevin equation, the former for the probability distribution function 
of time and space signal increments, the latter for the increments themselves.  They both are condensates 
of the huge set of (6N) Hamilton equations that should in practice describe the whole dynamics of the 
system of N particles by giving the time evolution of both coordinates and momenta of each individual 
particle.  This is a highly unrealistic scheme of work, and therefore conservation laws are used in order 
to derive the Navier-Stokes equations, from the averaging of basic quantities weighted by the above 
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probability functions.  Therefore, starting from LWP observations, we obtain the Langevin equation that 
represents the change with time of the increments of LWP signal and the Fokker-Planck equation that 
governs the time dependent distributions of the LWP.  These results may contribute to incorporating the 
space-time distribution of liquid water in global circulation models. 
 
Data and Method of Analysis 
 
Ground based microwave radiometer measurements of the atmosphere at the Southern Great Plains site 
of Atmospheric Radiation Measurement (ARM) Program of the U.S. Department of Energy during the 
period of January 9 to January 14, 1998, are considered.  The microwave radiometer measures the 
brightness temperature at two frequency channels, one at 23.8 GHz and the other at 31.4 GHz.  Then 
both brightness temperature data series are used to retrieve the vertical columnar amount of water vapor 
and vertical columnar amount of liquid water in the cloud, the latter called LWP.  The LWP is the most 
representative quantity of the atmosphere in presence of clouds.  Data series x(t) of the LWP in stratus 
clouds existing during the January 9-14, 1998, period (thus, 25 772 data points) and measured with 
resolution ∆t0 = 20 sec is shown in Figure 1. 
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Figure 1.  Time dependence of a stratus cloud LWP from January 9 to 14, 1998. 
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In previous studies, we have shown that scaling and long range correlations exist between the 
fluctuations of the LWP signal in broad range of time scales, e.g., between about 5 min and 3 hrs 
(Ivanova et al. 2000; Ivanova et al. 2002).  These scaling properties are a signature of the time cross-
correlations between the fluctuations of the signal.  The fluctuations of the signal can be measured by 
returns r(t) = x(t+∆t)/x(t), increments ∆x = x(t+∆t) - x(t) or normalized increments.  Recently was 
suggested that the manner of calculating the increments, e.g., left-justified ∆x = x(t+∆t) - x(t) or centered 
∆x = x(t+∆t/2) - x(t-∆t/2) can influence the results from scale-dependent analysis of stochastic data 
(Friedrich et al. 2000).  We will use the centered definition of increments in order to avoid possible 
spurious correlations that the left-justified definition may introduce (Friedrich et al. 2000).  In this study 
we are concerned with the statistics and evolution of the increments of the signal ∆x at different time 
lags ∆t (Waechter et al. XXXX; Ivanova and Ausloos 2002).  Applying the Fokker-Planck equation 
approach the statistics and evolution of the normalized increments of LWP signal is presented in 
(Ivanova and Ausloos 2002).  Probability distribution functions of the LWP signal for different time 
delays ∆t = 40s, 8 min, 80 min, are shown in Figure 2. 
 

 
 

Figure 2. Frequency p(∆x, ∆t) of the LWP increments ∆x for different time delays ∆t. 
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In order to characterize the statistics of the LWP changes, LWP increments ∆x1, ∆x2 for delay times 
∆t1, ∆t2 at the same time t are considered.  The corresponding joint PDFs are evaluated for various time 
delays ∆tn <∆tn-1 <… < ∆t2 <∆t1 directly from the given data set. 
 
A contour plot of the joint PDF for ∆t1 = 4∆t0 and ∆t2 = 2 ∆t0 is shown in Figure 3.  If two LWP 
changes, i.e., ∆x1 and ∆x2 are statistically independent, the joint PDF should factorize into a product of 
two PDFs: 
 
 P(∆x2, ∆t2; ∆x1, ∆t1) = P(∆x2, ∆t2)p(∆x1, ∆t1) 
 
However, the tilted anisotropic form of the joint PDF clearly shows that such a factorization does not 
hold for small values of |log(∆t2/ ∆t1)|, whence the two LWP changes are statistically dependent.  The 
same is found to be true for other (∆ti/∆tj) ratios.  To analyze these correlations in more detail, the 
question on what kind of statistical process underlies the LWP changes over a series of nested time 
delays ∆ti of decreasing duration should be raised. 
 

 
 

Figure 3.  Contour plot of the joint LWP increments p(∆x2,  ∆t2; ∆x1,  ∆t1) for ∆t2 = 40 s and ∆t1 = 80s. 
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A complete characterization of the statistical properties of the data set in general requires the evaluation 
of joint PDF’s pN(∆x1,∆t1;...; ∆xN,∆tN) depending on N variables (for arbitrarily large N).  In the case of 
a Markov process, an important simplification arises:  The N-point PDF pN is generated by a product of 
the conditional probabilities p(∆xi+1,∆ti+1|∆xi,∆ti) = p(∆xi+1,∆ti+1;∆xi,∆ti)/p(∆xi, ∆ti) for i = 1,..., N-1.  The 
conditional probability is given by the probability of finding ∆xi+1 values for fixed ∆ti+1. 
 
As a necessary condition, the Chapman-Kolmogorov equation 
 

 2 2 1 1 2 2 1 1p( , , ) ( )p( , , )p( , , )i i i i ix t x t d x x t x t x t x t∆ ∆ ∆ ∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆∫  (1) 
 
should hold for any value of ∆ti, with ∆t2 < ∆ti <∆t1.  We checked the validity of the Chapman-
Kolmogorov equation for different ∆ti  triplets by comparing the directly evaluated conditional 
probability distributions p(∆xi+1,∆ti+1|∆xi,∆ti) with the ones calculated according to Eq.1.  Results 
confirming that the LWP PDF’s satisfy Eq. 1 are plotted in Figure 4 (Ivanova and Ausloos 2002). 
 
The Chapman-Kolmogorov equation formulated in differential form yields a master equation, which can 
take the form of a Fokker-Planck Eq. (1) and (2) 
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in terms of a drift D(1)(∆x,τ) and a diffusion D(2)(∆x,τ) term.  The functional dependence of the drift and 
diffusion terms can be estimated directly from the moments M(k) of the conditional probability 
distributions 
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From a careful analysis of the data based on the functional dependences it is found that the drift term 
D(1) is well approximated by a linear function of ∆x, whereas the diffusion term D(2) follows a 
polynomial of degree two in ∆x (Figure 5). 
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Figure 4.  Conditional PDF p(∆x2,  ∆t2|∆x1, ∆1) for ∆t2 = 6 ∆t0 and ∆t1 = 2 ∆t0 from direct calculations and 
from Eq. 1.  Slices are taken at ∆x1 = 0.00225 g/cm2. 
 
Finally, the Fokker-Planck equation for the distribution function is known to be equivalent to a Langevin 
equation for the variable, i.e., ∆x here, (within the Ito interpretation [Reichl 1980; Risken 1984]): 
 

 (1) (2)( ) ( ( ), ) ( ) ( ( ), )d x D x D x
d

τ τ τ η τ τ τ
τ

∆ = ∆ + ∆  (6) 

 
where η(τ)  is a fluctuating δ-correlated force with Gaussian statistics <η(τ)η(τ’)> = 2δ(τ−τ’). 
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Figure 5.  Kramers-Moyal coefficients (a) D(1) and (b) D(2) estimated from conditional PDF p(∆x2,  ∆t2| 
∆x1,  ∆1); ∆t2=40 s and ∆t1=80 s.  The solid curves present a linear and a quadratic fit, respectively, for 
∆x in the interval (-0.005, 0.005) g/cm2. 
 
Conclusions 
 
At least since the pioneering work of Lorenz (1963) stochastic problems in turbulence are commonly 
treated as processes running in time t with long time correlations.  Inspired by the idea of an existing 
energy cascade process in clouds (Cahalan 1994) we present here a new approach, namely, we 
investigate how LWP changes are correlated on different time steps ∆t.  The PDF shape expresses an 
unexpected high probability (compared to a Gaussian PDF) of large LWP changes.  Furthermore, in 
contrast to the use of phenomenological fitting functions, the above method provides the evolution 
process of PDF’s from small time delays to larger ones.  This is through an analogy with two physically 
meaningful coefficients, a drift term D(1) and a diffusion term D(2).  The first one behaves linearly, thus 
looks like a “restoring force,” the second behaving quadratically in ∆x, is obviously like an 
autocorrelation function as for diffusion.  Finally, we present a method on how to derive an underlying 
mathematical (statistical or model free) equation for a LWP cascade from empirical data.  The method 
yields an effective stochastic equation in the form of a Fokker-Planck equation for the PDF of the LWP 
signal.  Further studies would focus on the implementation of these findings in cloud modeling. 
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