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Background 
 
Starting from a very simple stochastic cloud model by Mullamaa et al. (1972), several different 
stochastic models have been developed to describe radiative transfer regime in single-layer broken 
clouds (Kargin 1984; Titov 1990; Malvagi and Pomraning 1992; Barker et al. 1992; Malvagi et al. 1993; 
Kargin and Prigarin 1994; Prigarin and Titov 1996; Marshak et al. 1998; Prigarin et al. 1998, 2001; 
Evans et al. 1999, 2001).  Recently Kassianov (2003a) generalized the Titov’s (1990) stochastic model 
to multilayer clouds.  Though the main applicability criterion of any stochastic cloud model is in its 
agreement with measured statistical characteristics for both cloud and radiation fields, there are yet very 
few examples of model validations (Lane 2002, Kassianov et al. 2003b). 
 
The goal of the present study is to check the validity and applicability of the statistically homogeneous 
Poisson stochastic cloud model proposed by Titov (1990).  This model (we will call it the “Poisson 
model”) is completely determined by only three parameters:  (1) cloud fraction N; (2) cloud optical 
depth τ (assumed to be constant for all cloud elements); and (3) aspect ratio γ = H/D where H is the 
geometrical thickness of a cloud layer and D is the horizontal size of clouds.  The earlier attempts to 
apply the Poisson model to experimental data (Titov 1990) showed that, in general, the radiative transfer 
processes in real broken clouds are well approximated by the model.  Unfortunately, initially there was 
little data available for validation and even available measurements were incomplete.  One of the main 
problems for the validation of the Poisson model is the ambiguity in estimation of the aspect ratio, one 
of the most important parameters of the model. 
 
At this stage of validation, instead of real data we use realizations of a modified version of the 
fractionally integrated cascade model (Schertzer and Lovejoy 1987) with the modifications suggested by 
Marshak et al. (1998) to simulate broken cloudiness.  We will call it the “cascade model”.  Each 
realization of the model has four well-defined parameters, easily estimated from real data:  two of them 
come from a single-point statistics (mean optical depth, τmean, and standard deviation, or rather a direct 
function of it, p), one comes from a two-point statistics (scaling exponent β), and one is a cloud 
fraction, N.  We assume that realizations of the cascade model represent real measurements.  Mean 
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radiative and cloud characteristics have been obtained by averaging over a set of cloud realizations 
(symbol ‹.› will be used for the ensemble-averaged statistics). 
 
We determine the aspect ratio γ∗ by adjusting the mean direct solar radiation calculated by the Poisson 
model for oblique illumination to the corresponding values of the cascade model.  There are two 
questions:  (1) Since, in general, mean direct radiation is a function of solar zenith angle (SZA), can we 
find the aspect ratio γ∗ that is appropriate for all SZA?  (2) For the chosen aspect ratioγ∗, how close will 
be the average values of albedo and diffuse transmittance for the cascade and Poisson models, 
respectively?  The present study addresses these questions. 
 
Statistical Characteristics of the Cascade Model 
 
Statistical Characteristics of Clouds 
 
Because for given parameters β and p, the cloud fraction varies from one realization to another, it is 
reasonable to use cloud fractions in statistical rather than in deterministic sense with its mean, <N>, 
standard deviation, σN, minimum, Nmin, and maximum, Nmax, as well as with its probability density 
function f(N).  Cloud fraction statistics can be estimated from a sample of M cloud realizations; 
calculations showed that M = 104 cloud realizations are sufficient to adequately represent the 
N-statistics.  Figure 1 illustrates examples of statistical characteristics of the cloud fraction.  Note that 
going from one realization to another not only the cloud fraction varies but there are also changes in τmin 
and τmax for a fixed average value τmean. 
 

 
 
Figure 1.  Statistical characteristics of cloud fraction N in a modified version of fractionally integrated 
cascade model for different values of <N>.  Six cascades (L = 6) with spectral exponent β = 5/3, 
variance parameter p = 0.35 were used; the number of cloud realizations M = 10000. 
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Statistical Characteristics of Radiation 
 
Let a unit solar flux be incident at the top of the cloud layer in direction ( 000 ,ϕθ=Ω )

r
 where θ0 and ϕ0 

are zenith and azimuth solar angles, respectively.  For simplicity, we assume here an absorbing surface 
and conservative cloud droplet scattering; no aerosols are taken into account.  Pixel sizes are taken to be 
0.1 km × 0.1 km (with a modeled cloud field of 6.4 km × 6.4 km); periodic boundary conditions are also 
assumed, with the same average optical depth τmean for all realizations. 
 
To calculate the radiative characteristics, for each cloud realization that represents a complex 
inhomogeneous three-dimensional medium, we used a Monte Carlo “maximal cross section” method 
(Marchuk et al. 1981).  To get efficiently the radiative characteristics averaged over a number of 
realizations, we use the randomization procedure (Mikhailov 1986) that is based on introduction of an 
additional randomness.  The optimum number of photon trajectories for each realization is usually 
selected from special numerical tests.  Our calculations showed that the number of 104 trajectories is 
close to the optimum for the mean fluxes and their standard deviations and 105 trajectories for 
probability density functions.  Figure 2 shows an example of the distributions of direct solar radiation S, 
diffuse transmittance Qs, and albedo A, respectively; means, standard deviations, and variability ranges 
are added for completeness. 
 

 
 
Figure 2.  Statistical characteristics of albedo A and fluxes of direct S and diffuse Qs radiation in the 
cascade model:  L = 6, β = 5/3, <N>=0.515.  Mean optical depth τmean = 13, standard deviation 
στ = 11.9, pixel size 0.1 km×0.1 km, cloud thickness H = 1 km, and SZA θ0 = 60°. 
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Validation of the Poisson Broken Cloud Model 
 
The main methodological aspect here is the development of a reasonable approach to specify the 
Poisson model parameters for validation of the mean radiative fluxes against realizations of the cascade 
model. 
 
The Titov’s (1990) approach permits efficient calculation of ensemble-averaged radiative characteristics 
〈R(τ)〉pois assuming that the cloud optical depth τ does not change from one realization to another.  (Here 
R stands for S, Qs, or A).  We assume that the distribution of cloud optical depth can be well described 
by the gamma distribution (e.g., Barker et al. 1996) 
 

 ( ) ( ) ( ) ( )
mean

1 ,exp1,,p
τ

ν
=λλτ−τλ

νΓ
=λντ −νν
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=στ  is the standard deviation.  To account for the variations in optical 

depth for the real clouds, we average 〈R(τ)〉pois over the set of optical depth values using Eq. (1): 
 

 ( ) ( ) ( ) τλντθγτ=θγ Γ

∞

∫ d,,p,N,,R,N,R
0

pois0pois0 , R = S, A, Qs. (2) 

 
 
The symbol 〉R〈pois is used to emphasize that the radiative characteristics are averaged over both the set 
of cloud realizations and cloud optical depths. 
 
The other two required Poisson model parameters are the cloud fraction N, taken to be equal to <N>, 
and the aspect ratio, γ, chosen in such a way that, for N = <N>, the mean value of the direct radiation for 
the Poisson model, 〉S(γ,N,θ0)〈pois coincides with the direct radiation averaged over all realizations of the 
cascade model, 〈S(N,θ0)〉, i.e., 
 
 ( ) ( )0pois0 ,NS,N,S θ=θγ  (3) 

 
Let us now take the statistical approach; we state and then verify the following two hypotheses. 
 
Hypothesis 1.  If for a given oblique SZA θ0 >0 and a cloud fraction N = 〈N〉, the aspect ratio γ is 
determined from Eq. (3), the calculated average albedo 〉A(γ(θ0),N,θ0)〈pois and transmittance 
〉Qs(γ(θ0),N,θ0)〈pois will be within the confidence intervals defined by the standard  deviations of the 
cascade model, 
 
 ( )( ) ( ) ( ) ( ) ( )[ ],,N,NR,,N,NR,N,R 0R00R0pois00 θσ+θθσ−θ∈θθγ  R = A, Qs. (4) 
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Assume that the SZA θ0 is fixed.  Since the mean flux of the direct radiation in the Poisson model for 
θ0 = 0 does not depend on γ, we will compare the mean values of the albedo and diffuse transmittance 
only for the oblique solar angles 10° ≤θ0 ≤75°.  Our intense numerical calculations confirmed that, when 
γ is specified by (3), Eq. (4) is valid (see Table 1).  Note that here, for specified <N>, τmean, and στ, the γ 
value depends on θ0, i.e., γ = γ(θ0). 
 

Table 1.  Mean solar radiation fluxes calculated by the cascade and poisson models:  〈N〉 = 0.515, 
τmean = 13, στ = 11.9. 

θ0 = 60° θ0 = 75° 

Cascade Model 
Poisson Model 

γ = 1.56, D – 0.64 km Cascade Model 
Poisson Model 

γ = 2.04, D = 0.49 km 
〈S〉 = 0.19,  
σS = 0.04, 

S ∈ (0.15,0.23)  

〉S〈pois = 0.191 〈S〉 = 0.047, 
σS = 0.05, 
S ∈ (0,0.1)  

〉S〈pois = 0.047 

〈A〉 = 0.356,  
σA = 0.015, 

A ∈ (0.34,0.37) 

〉A〈pois = 0.348 〈A〉 = 0.517 
σA = 0.03, 

A ∈ (0.49,0.55) 

〉A〈pois = 0.512 

〈QS〉 = 0.454 〉QS〈pois = 0.461  〈QS〉 = 0.436 〉QS〈pois = 0.441 
 
Hypothesis 2.  For a fixed cloud fraction N = <N>, there is a range of aspect ratios γ ∈ [γmin, γmax] that is 
valid for any (reasonable) SZA 0 ≤θ0 ≤75°: 
 
 ( ) ( ) ( ) ( ) ( )[ ]0R00R0pois0 ,N,NR,,N,NR,N,R θσ+θθσ−θ∈θγ , R=S, A, Qs. (5) 

 
To test the second hypothesis, we use the following approach.  For given <N>, τmean and στ, and fixed 
SZA 10° ≤θ0 ≤75°, we first calculate the mean direct radiation, 〈S(N,θ0)〉, and its root-mean-square 
deviation, σS(N,θ0).  Next, for the Poisson models, we select γmin (θ0) and γmax (θ0) in such a way that 
 
 ( )( ) ( ) ( ),,N,NS,N,S 0S0pois00min θσ+θ=θθγ  (6) 

 ( )( ) ( ) ( )0S0pois00max ,N,NS,N,S θσ−θ=θθγ  

 
Finally, for chosen γmin (θ0) and γmax (θ0) we calculate the mean values of A and Qs.  
 
Figure 3 presents γmin (θ0) and γmax (θ0) for θ0 varying in the range 10° ≤θ0 ≤75°.  Evidently, there is a 
common region of the aspect ratios (γmin, γmax) for the entire angular range 10° ≤θ0 ≤75°.  (In view of the 
weak dependence of the direct radiation in the Poisson model on parameter γ for θ0 = 0, it can be 
extended to 0° ≤θ0 ≤75°).  This means that, in selection of parameter γ ∈ (γmin, γmax), for all SZA 
0° ≤θ0 ≤75° Eqs. (4) will be valid.  For <N>=0.515 and τmean = 13, γmin and γmax correspond 
approximately to the aspect ratio for θ0 = 30° and are found to be 1.33 and 1.93, respectively.  
Qualitatively, this also applies to the other mean cloud fractions and mean cloud optical depths.  It 
follows from these results that for a wide range of model input parameters (0° ≤θ0 ≤75°, 6 ≤ τmean≤ 26), 
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there is a set of the aspect ratios around γ* ≈ 5/3, which can be used to calculate mean radiative fluxes in 
the Poisson cloud model with acceptable accuracy. 
 

 
 
Figure 3.  Variability range (γmin, γmax) of the aspect ratio γ that satisfies the condition:  

R γ , N ,θ0( )
pois

∈ R N,θ0( ) −σ R N ,θ0( ), R N ,θ0( ) + σ R N,θ0( )[ ], where R = S, A, or Qs.  The hatched 

region corresponds to those γ values that are common for the entire range of SZA 0 ≤θ0 ≤75°.  Mean 
optical depth τmean = 13, standard deviation στ = 11.9, N = 0.515 
 
Summary and Plans for Future Work 
 
The proposed approach allowed us to validate the stochastic Poisson model of broken clouds (Titov, 
1990) against realizations of the cascade cloud model that served as a prototype of real measurements.  
The results of the validation test suggest that the Poisson cloud model can be successfully used to 
calculate the mean radiative properties of broken clouds.  As soon as we know average cloud fraction 
and mean and variance of the in-cloud optical depth (assumed to be gamma distributed), we can estimate 
the average radiative transfer characteristic by setting the aspect ratio in the Poisson stochastic model to 
5/3 for any reasonable SZAs.  If, in addition, we know the direct radiation the aspect ratio can be 
determined more accurately from the condition of matching the mean direct radiative fluxes with those 
calculated from the Poisson cloud model.  
 
In this study, the cloud cascade model determined the input parameters for the Poisson model.  In a 
future, we plan to use cloud properties retrieved from ground-based observations at the ARM South 
Great Plains site:  cloud-base and cloud top heights, cloud fraction and cloud optical depth.  These data 
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will be used to determine the input parameters for the Poisson model to validate it against the data from 
the ARM’s shortwave radiometer archive. 
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