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Introduction 
 
Clouds are important players in the global radiation budget with low-level water clouds being one of the 
most influential types. Classified as stratocumulus and stratus, these water clouds cover 34% of oceans 
and 18% of land at any given time (Considine et al. 1997).  A 50% plus global coverage, a high albedo 
when compared to the ocean, and temperatures comparable to the surface causes the low stratiform 
clouds to provide about 60% of the annually averaged net cloud radiative forcing (Hartmann et al. 
1992).  Therefore, variations in low cloud cover may have a significant impact on climate change.  
Additionally, changes in the microphyical properties of stratiform cloud quantified by the liquid water 
path (LWP) and size distribution may result in changes in albedo.  This change in albedo, as a result of 
changes in microphysics, can impact climate change even if variations in cloud cover do not occur.  Our 
goal is to study variations in the microphysical properties of stratus and their effect on solar radiation, 
thereby providing an assessment of the comparative importance of the various parameters, defining the 
warm cloud microphysics.  We make use of data from the Southern Great Plains (SGP) Atmospheric 
Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) site Central Facility (CF) as we 
require a statistically significant sample size for our study.   
 
Methodology and Theory 
 
The Millimeter Wave Cloud Radar (MMCR), Micropulse Lidar (MPL) and Belfort Ceilometer (BLC) 
data are used in combination to identify single-layer clouds (Clothiaux 2000).  Atmospheric profiles are 
obtained from a combination of radio-sondes, thermal interferometer, Microwave Radiometer (MWR), 
surface observations, and National Oceanic and Atmospheric Administration (NOAA) Forecast System 
Laboratory’s Rapid Update Cycle (RUC) model output.  The LWP is retrieved from the MWR data 
(Liljegren 2000).  Single-layer water clouds are selected using a temperature threshold for the MMCR 
derived cloud top and a lognormal drop size distribution is assumed.  The familiar relationship defining 
effective radius (Hansen and Travis 1974) 
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is useful for defining the size parameter of a cloud where n(r) is the representative size distribution (log-
normal in our case) and r the physical radius of a water drop assuming sphericity.  Using reff simplifies 
the expression for optical depth  
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where Qext is the extinction efficiency (assumed constant for individual wavelength bands used in our 
radiative transfer calculation) and ρw is the density of water.  Using reasonable effective radii values 
occurring in nature Qext asymptotes to two for solar wavelengths.  
 
Drop concentrations for a cloud can be calculated using cloud boundaries from the MMCR, MPL, BLC 
combination, a given effective radius, and a drop-size standard deviation (log-normal width σlog in our 
case).  Additionally, using Mie theory, for a given radius and width, asymmetry parameters and single-
scattering albedos can be calculated for each wavelength band in consideration, assuming constant 
refractive indices for the individual bands.  
 
As our ultimate interest is in cloud-radiation interactions, we compare observed and modeled solar 
broadband fluxes for single-layer stratus in order to estimate the performance of size retrievals.  A 
δ-2stream radiative transfer scheme using k distribution and correlated-k technique for spectral 
integration is used for radiative transfer calculations (Kato et al. 1997).  Aerosol optical depths derived 
from the Multi-filter Rotating Shadowband Radiometer (MFRSR) (Harrison et al. 1994) data are used in 
our radiative transfer calculations as they have a significant impact in clear-sky cases.  A Lundholm 
curve is fitted to the MFRSR optical depth data, available for five wavelengths, for usage in calculations 
over 32 spectral bands over the solar spectrum.  Ozone optical depths available from the Total Ozone 
Mapping Spectrometer (TOMS) data aboard the Earth Probe Satellite and wavelength dependent 
Rayleigh optical depths based on standard profiles (Hansen and Travis 1974) are subtracted before the 
interpolation.  The aerosol absorption calculations assume a composition of mineral dust. Figure 1 
delineates our approach to flux calculations.  
 
Cloud Forcing 
 
As downwelling surface solar flux is dependent on solar zenith angle, its effects are removed by 
normalization as represented by, 
 
 (t)(t)]/FF(t)[F       (t)CF oclr,oclr,oact,o −=  (3) 
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Figure 1.  Flowchart illustrating the downwelling flux calculation procedure. 
 
for observations.  CFo(t) is the observed cloud forcing, Fact,o(t) the actual downwelling solar flux, and 
Fclr,o(t) the interpolated clear-sky solar flux (Long 1999).  For calculations the cloud forcing is, 
 
  (t)(t)]/FF  -  (t)[F  f      (t)CF cclr,cclr,ccld,c ×=  (4) 
 
where Fcld,c(t) is the calculated flux with clouds, Fclr,c(t) is the calculated clear-sky flux, and f the 
fractional cloud cover over our retrieval domain.  The fractional cover is used to weight our calculations 
for broken cloud cover effects on the domain.  Note that f is absent for observations (Eq. 3) as the 
fractionality is implicit in measurements.  The values of CF(t) generally range from -1 to 0 but values 
greater than 0 are possible due to cloud inhomegenities.  In our study, we ignore cases with observations 
that have values of cloud forcing greater than 0.  Our procedure does not have the capability to reflect 
these positive values.  The physical interpretation of cloud forcing implies that larger negative values 
and larger magnitudes are analogous to thicker clouds with higher optical depths and reflectivities. 
 
Skill Score Evaluation Technique 
 
In our study, a calculation of downwelling solar flux using a fixed width and effective radius, defined as 
climatological value, is used as control.  A set of effective radii from retrievals using MMCR and MWR 
data (Kato. et al. 2001) is also used for surface downwelling flux calculations and denoted as best 
estimate of flux.  The observations are from the Basic Radiation System (BRS) suite of instruments 
located at the CF of the SGP site (Long et al. 1999). 
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The calculation of a correlation coefficient between the observed, climatological, and best estimate 
normalized forcing values does not sufficiently represent the nature of variation in the datasets.  
Therefore, a technique used by the forecasting community is used to resolve the variances in the 
datasets.  A skill score, a quantitative evaluation of the performance of the retrievals, relative to the 
climatology, with the observations as truth, is calculated.  If we define the best estimate results as 
forecast (F), the climatological results as control (C), and the measured values as observed (O) the mean 
square error of the forecast (MSEf), for our calculations, is, 
 

   )O -(F
N
1  MSE               2

iif ∑=  (6) 

 
where N is the number of data points, and the subscripts denote the individual values of F and O.  A 
mean square error for control can similarly be defined by replacing F with C in (6).  Eq. (6) can also be 
represented in the form, 
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where the overbars represent the respective means, S’s with subscripts represents the standard 
deviations.  Rfo represents the correlation coefficient of the forecast and observed datasets.  The three 
terms in Eq. (7) represent the bias error squared (Bf), the non-systematic errors (Nf) and the variance 
error (Vf), respectively.  These three terms provide an insight into the errors in the forecast or control 
datasets when compared to observations.  The skill score (SS) of the forecast is, 
 

SS  =  1 - MSEf / MSEc (8)  
 
where the subscripts identify the datasets.  A value of 0 shows no skill while positive values show better 
forecasting skill.  The SS and MSE values are used in our analysis of the normalized cloud forcing data 
and are presented next. 
 
We use 35 days of data for the time period between January 1997 and January 1998 and use a 1-minute 
resolution for our broadband calculations. 
 
Results 
 
The use of plane-parallel clouds is a good approximation when we have cloud fractions close to 1 or 
when the sky is overcast.  Nevertheless, we use normalized cloud forcing, weighted by the cloud 
fraction to account for cases for which the cloud fraction is not unity.  To obtain a cloud fraction we use 
the MMCR, MPL, BLC combination and take the fraction of positive cloud detections in the total 
number of measurements during each calculation period.  In our case the data is at 10 seconds resolution 
while our calculation is done for a 60-second averaging period.  We therefore have 6 measurements per 
calculation period from which we derive our cloud fraction.  This cloud fraction is based on the 
assumption that spatial and temporal averaging is identical.  Note that we have selected days with stratus 
and therefore, have mostly overcast cases.  It is interesting that in many cases the LWP values for stratus  
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lie close to the noise floor of the MWR, leading to uncertainties in the LWP that may even be around 
100% (Figure 2).  This uncertainty in LWP translates directly to comparable levels of uncertainty in the 
calculation of cloud optical depth.  
 

 
 
Figure 2.  Histogram showing 1 minute averaged LWP from 20-second data (9261 points in 0.025 mm 
bins) for daytime stratus case occurring between January 1997 and January 1998.  Note that negative 
liquid water values occurring due to instrument noise have been replace by interpolation using 
neighboring positive values if there is positive stratus detection using the MMCR, BLC, MPL 
combination.  All points above 0.475 mm are shown as the last bar in the histogram for convenience. 
 
The distribution of retrieved effective radii for our daytime cases (using the Kato et. al 2000 technique) 
is approximately gaussian (Figure 3) with a median value of 6.61 µm.  The effective radius is assumed 
constant for a profile and retrieved values over 15 µm are not considered.  The climatological effective 
radius is taken to be 7.5 µm.  This value is used as it minimizes the net bias in calculated normalized 
cloud forcing when compared with corresponding observations.  The scatter in retrieved normalized 
forcing (Figure 4b) is higher than the scatter in the forcing calculations using climatological radius 
(Figure 4a) when both are compared to a common set of observations.  The correlation coefficient of 
control to observation Rco is 0.76, while the correlation of forecast to observation Rfo is 0.66.  Therefore, 
there is significant correlation in both cases with the fixed radius calculations showing a better 
correlation to the observations than the retrievals.  Table 1 shows the mean square errors divided into 
components for both the control and the forecast when compared with the observed forcing values.  The 
mean square error for the control is seen to be nearly 40% less than that of forecast.  The main source of 
error is seen to be the bias in the forecast although the random error is also significantly less in the 
control.  Overall, the performance of the climatological effective radius is seen to be better than that of 
the retrievals.  This is also obvious as the skill score SS is −0.41, a negative value, which shows no skill 
as far as the retrievals are concerned.  
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median radius 6.61µm 
 

mean radius 6.57 µm 

 
Figure 3.  Effective radii (9216 points in 0.5 µm bins) from the MMCR, MWR, and LWP retrievals.  The 
values used in this distribution are from the same times as those used for daytime stratus calculations.  
The median radius is 6.61 µm and the mean is 6.57 µm. 
 

Table 1. Components of the Mean Square Error of Control and Forecast When 
Compared to Observations 

 
 Bias2 Random Variance Total 

MSEco 0.000094 0.027237 0.000997 0.028329 
MSEfo 0.001317 0.038013 0.001052 0.040382 

 
The regression coefficients for the least squares shows that most of the bias arises due to higher cloud 
forcing values when the observed forcings are low (solid black line in Figures 4a and 4b).  This may be 
the result of an overestimate in liquid water, an underestimate of the effective radius or the result of 
using a plane parallel cloud when we have a broken cloud cover in reality.  Another possibility is the 
absence of sensitivity of LWP retrievals at lower values due to uncertainties in the measured brightness 
temperatures.  A histogram of cloud forcing (Figure. 6) shows that most of the cloud forcings have 
values less than −0.4 and the median of the observed normalized forcings is seen to be −0.65.  Thus, the 
smaller end of the forcing scale produces a disproportionate effect on the zeroth order coefficient of the 
regression. 
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Figure 4a.  Scatter plot of the normalized forcing using fixed effective radius of 7.5 µm (control).  The 
regression coefficients are listed in Table 2. 
 

 
 

Figure 4b.  Scatter plot of the normalized forcing using retrieved radii (forecast).  The forecast points 
are show in different colors to represent the radii divided into quartiles.  The regression coefficients are 
listed in Table 2. 
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Table 2.  Regression coefficients for the least squares fit to the normalized cloud 
forcing data.  The correlation coefficients are also shown.  The black solid and pink 
dotted lines in Figures 5a and 5b are the fits using the coefficients in this table. 

Least Squares Fit 
Correlation 

Coefficient R 

Regression 
Coefficients 

(unconstrained) 

Regression 
Coefficient 

(constrained) 
a0=0 

a0 = -0.063 
Control to 
Observations Rco = 0.76 

a1 = 0.883 
a1 = 0.973 

a0 = -0.169 
Forecast to 
Observations Rfo = 0.67 

a1 = 0.787 
a1 = 1.029 

 

439 points 

 
Figure 5a.  Time series of normalized forcing (1 minute averaged calculations) for January 1, 1997.  
The rms error for the climatogical radius of 7.5 µm is 0.051, while it is 0.058 µm for the retrievals. 
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447 points 

 
Figure 5b.  Time series of normalized forcing (1 minute averaged calculations) for December 3, 1997.  
The rms error for the climatogical radius of 7.5 µm is 0.04, while it is 0.077 µm for the retrievals. 
 
Therefore, if the regression is constrained so that the 0 of the observations match the 0 of the 
calculations and retrievals, the regression line closely matches the observations in both the cases (pink 
dotted lines in Figures 4a and 4b).  
 
The performance of the retrievals should be considered in the context of the performance of the fixed 
climatological radius.  This is better illustrated in Figures 5a and 5b, which show the time series of two 
days in detail.  
 
The root mean square (rms) error in the two cases, for the climatogical radius is 0.051 and 0.04, 
respectively.  Therefore, it is obvious that the climatological radius by itself produces good agreement 
with the observations.  The retrievals perform well in the first case but have a significant bias in the 
second.  The other days (not shown) were also compared individually but none of them showed a better 
performance when using the retrievals.  Also, the median of the control-normalized forcings is −0.66, 
which is comparable to that of the observations.  On the other hand, the median for the retrievals is 
−0.7462.  This value is lower than both the observations and the calculations.  As we use the same LWP  
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Figure 6.  Histogram of the observed normalized cloud forcing divided into bins of size 0.025.  The 
median value of the forcing is 0.65 with predominance of points below −0.4. 
 
for out calculations, it is clear that on the average, the effective radius for the retrieval are lower than the 
fixed climatological value.  Figure 3 also corroborates this point and shows the mean retrieved radius is 
6.57µm, which is nearly 1 µm smaller than the climatological value. 
 
Conclusions 
 
Our primary goal was to assess the performance of size retrievals of stratus clouds when compared to 
climatology.  It is interesting to note that usage of a tuned climatological radius leads to results with a 
high correlation and low rms error.  In order to perform better than the climatology the size retrievals 
have to drive down errors to levels lower than can be done at this stage.  Therefore, contrary to what we 
would expect, the retrievals have a higher scatter than the climatology even though they fit well with the 
observations.  Therefore, the retrievals end up showing no skill when compared to climatology.  This 
leads to two questions.  The first concerns the sources of errors in the retrievals and whether they are 
rectifiable, given our present level of understanding.  The second is whether the second order sensitivity 
of the radius requires a better value of radius and what proportion of the errors is attributable to 
uncertainties in LWP.  
 
Addressing the first question we can see that the errors may be the effect of propagating errors in either 
one or both the inputs to the retrievals namely the radar reflectivities and the LWPs from the MWR.  It 
has recently been identified that the radar reflectivies in the near field are biased lower than normal.  On 
the other hand, it has been established that the noise floor of the MWR is 0.03 mm.  Additionally, the 
minimum level of uncertainty in LWP retrievals in the best possible case is 0.01mm.  The MWR-derived 
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LWP can therefore have errors of over 100% in a significant number of cases as the measurements have 
a median value of 0.07, if we neglect outliers with very high values.  These outliers are possibly due to 
condensation on the instrument.  It may also be possible that the drop size distribution is bimodal in 
reality.  This can lead to significant errors in retrievals.  The only solution in the case of bimodal 
distributions is the collection of spectral data using the radar.  Currently, the MMCR does not collect 
spectra on an operational basis but there is an apparent need to do so. 
 
One possible way of reducing the errors in the LWP retrieval is to use an infrared retrieval to get LWPs 
in cloud with emissivities less than unity.  We are currently trying to devise a retrieval that, if successful, 
will lead to reduction in the uncertainties in LWP. 
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