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Introduction 
 
Satellite remote sensing is the major source for statistics of cloud properties; however, accurate and 
robust methods for extracting both optical and geometrical characteristics of broken clouds have yet to 
be fully developed.  Currently, most broken cloud retrieval schemes rely on spectral (e.g., microwave, 
visible, or infrared [IR]) observations from near-vertically pointing remote sensors (Rossow 1989; 
Minnis et al. 1992).  Although the multi-spectral techniques can provide accurate retrievals of cloud 
fraction and mean optical depth, the estimation of other important parameters, such as cloud vertical 
thickness, are not as reliable. 
 
In this paper, we demonstrate how the horizontal distribution of cloud pixels and their vertical 
geometrical thickness can be reconstructed from multi-angle satellite observations.  Physically, the 
suggested approach is based on two obvious dependences:  (1) for a fixed horizontal cloud distribution, 
the probability of a clear line of sight is a monotonically decreasing function of zenith viewing angle, 
and (2) the decrease rate of this probability depends on the vertical cloud size stratification.  The study is 
focused on the special case of small marine cumulus clouds observed by the multi-angle imaging 
spectroradiometer (MISR), recently launched on the National Aeronautics and Space Administration 
(NASA) Terra platform. 
 

Directional and Average Cloud Fraction 
 
Among fundamental parameters describing the geometry of broken clouds is the directional cloud 
fraction, N(θ) = 1 - Pclear(θ), where Pclear(θ) is the probability of a clear line of sight at zenith viewing 
angle θ.  The directional cloud fraction N(θ) depends on the nadir-view cloud fraction Nnadir, the 
horizontal cloud distribution (e.g., random, clustered, or regular), and vertical cloud size variability.  In 
the general case, an empirical expression for N(θ) can be formulated based on field data or results of 
model simulations.  For some cloud models, an analytical expression can be obtained in terms of cloud 
bulk geometrical parameters (Han and Ellingson 1999; Titov 1990).  As an example, for a broken cloud 
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field composed of randomly placed parallelepipeds with identical and constant geometrical thickness 
∆h, the directional cloud fraction is given by (Titov 1990) 
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where ρ and D are the model parameter and the average horizontal cloud size, respectively.  From 
Eq. (1) it follows that Nnadir, D, and ∆h can be determined uniquely by high-resolution observations from 
nadir and oblique (off-nadir) viewing directions.  The geometrical thickness ∆h of broken clouds can 
vary strongly in space, so that the directional cloud fraction N(θ) may be dependent not only on the first 
moment (the average vertical cloud size ∆H), but also on higher statistical moments describing the ∆h 
variations. 
 
The following simple example shows qualitatively how variations of cloud top height influence the 
directional cloud fraction N(θ).  We consider a two-dimensional cloud (a cloud infinite in the 
y-direction), assuming that the cloud consists of just three pixels with the same horizontal size L (cloud 
horizontal size is D = 3 × L) and the same cloud base Hb (Hb = 0).  Let us consider two cases.  For 
case 1, all pixels have the same vertical size H.  For case 2, the first and third pixels have the same 
vertical size hmin = H/2, while the vertical size of the second (middle) pixel is hmax = 2 × H.  Obviously, 
both case 1 and case 2 have identical mean vertical size H.  From simple geometrical considerations, it 
follows that, for slant viewing directions, the directional cloud fraction N(θ) (cloud projection onto x-
axis) will be )tan(θ×+ HD  for the case 1; while for case 2, the size of the geometrical shadow will be 

D + hmin × tan(θ) if (hmax - hmin) × tan(θ) ≤ L and D - L + hmin × tan(θ) if (hmax - hmin) × tan(θ) > L.  Thus, 
for the same horizontal D and mean vertical H cloud sizes, the directional cloud fraction N(θ), 
corresponding to the case with irregular cloud top boundary (case 2), can either be greater or less than 
the directional cloud fraction N(θ), corresponding to the case with plane parallel cloud geometry 
(case 1).  For a cloud field, the dependence of N(θ) on cloud shape will be even more complex, because 
of the effects of mutual cloud shadowing.  These effects, in turn, depend on the horizontal cloud 
distribution and vertical cloud structure. 
 
For accurate ∆h retrieval, data for nadir and oblique viewing angles must be available.  High-resolution 
(∆x~0.275 km) observations at nine viewing angles (θ1 = -70.5, θ2 = -60, θ3 = -45.6, θ4 = -26.1, θ5 = 0, 
θ6 = 26.1, θ7 = 45.6, θ8 = 60, θ9 = 70.5) are available from the MISR, recently launched on the NASA 
Terra platform.  From here on, forward (φ=0) zenith angles are positive, while aft (φ=180) ones are 
negative.  Also, we have Nnadir = N(θ5).  Because the MISR instrument measures reflectance in nine 
viewing directions, it seems reasonable to use all this information for ∆h retrieval.  To do that, we 
introduce an average cloud fraction Navr defined as: 
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We now discuss how N(θ) can be retrieved from satellite data. 
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Average Cloud Fraction and Threshold 
 
Given a set of measured reflectances at a single angle I(θ), a corresponding probability density function 
pdf {I(θ)}can readily be obtained that satisfies the normalization condition 
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where Imin(θ) and Imax(θ) are the minimum and maximum reflectances, respectively. 
 
One can define the directional cloud fraction Nobs(θ) as: 
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where I0(θ)is a radiative threshold. 
 
Here and below, the subscript “obs” on N(θ) and other variables indicates that they are obtained on the 
basis of Eq. (4).  We emphasize, that the threshold I0(θ) depends on cloud geometrical and optical 
properties, atmospheric and surface parameters, and illumination conditions (solar zenith and azimuth 
angles).  Presently, no reliable methods are available to select a threshold set I0(θ) = {I0(θi), i = 1, ..., 9} 
unambiguously; hence, the use of Navr,obs for a ∆h retrieval is not generally justified. 
 
We consider an alternative parameter 
 
 nadiravr NNN −=∆ . (5) 

 
For a fixed horizontal distribution of cloud pixels, the parameter ∆Nobs characterizes the relative 
influence of their vertical geometrical thickness ∆h on Navr,obs.  Obviously, the ∆h retrievals should use 
∆Nobs values as large as possible, in order to get the maximum effect of ∆h.  According to Eqs. (2) and 
(4), ∆Nobs is a function of nine parameters I0(θi), i = 1, ..., 9.  For simpler presentation and easier 
comparison of results, a change to a single relative variable is useful.  To perform a calculation of 
I=Nobs(θi), i = 1, ..., 9, steps (bins) ∆I(θi) = [Imax(θi) - Imin(θi)] / M, were selected.  The parameter M, 
which will be referred to as the number of intensity bins, was set to be equal for all θi, i = 1, ..., 9.  In this 
case, I0(θi) = Imin(θi) + m × ∆Ι(θi), i = 1, ..., 9 and ∆Nobs depends on just one relative variable (digital 
count) m, m = 1, ..., M. 
 
The ∆h retrieval algorithm proposed here consists of the following steps: 
 

• A relative value m = m* is determined, at which ∆Nobs(m*) peaks. 
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• An absolute threshold is selected for nadir radiance:  ∗∗ ×θ∆+θ=θ mIII )()()( 55min50 .  This value 

)( 50 θ∗I  is then used for determining horizontal cloud distribution.  Specifically, the condition 

)()( 505 θ>θ ∗II  is checked for each pixel.  All pixels satisfying this condition are flagged as 100% 

cloud coverage, all other pixels are background (clear-sky). 
 

• For the fixed horizontal distribution of clouds, the parameters of the chosen cloud model are adjusted 
such that ∆Nmod = ∆Nobs(m*). 

 

MISR Data and Cloud Retrieval 
 
In the following example, only eight MISR images (~15x15 km2), representing a field of small 
(D~1 km) marine cumulus off the coast of California, have been considered because the Aa camera 
(θ4 = -26.1) was not working properly during this orbit.  These eight MISR images were processed to 
obtain the corresponding radiance probability densities pdf {I} as functions of the dimensionless digital 
count m, and these quantities were then used to calculate the nadir-view Nnadir,obs and average Navr,obs 
cloud fractions (Figure 1).  In contrast to Nnadir,obs and Navr,obs, the difference ∆Nobs is not a monotonically 
decreasing function of m and has a maximum ∆Nobs = 0.133 at m = 14 (Figure 1).  Correspondingly, the 
absolute nadir radiance I(θ5) at m = 14 is 15.7 (radiance dimension is Wm-2 sr -1 µm-1).  This value 
I(θ5) = 15.7 was used here as a threshold I0(θ5).  It should be noted that the threshold values representing 
more than 3% minimum visible reflectivity (clear sky) have been frequently used for cloud detection 
(Rossow et al. 1985).  The selection of threshold I0(θ5) and, thereby, designation of the horizontal 
distribution of cloud pixels conclude the first step of the ∆h retrieval. 
 
Next, for determining ∆Nmod, we need to select a cloud model.  In other words, we have to establish a 
rule by which to determine the geometrical thickness of each cloud pixel.  A model that relates the 
geometrical ∆h and optical thickness, τ, of the cloudy pixels has been suggested (Minnis et al. 1992).  
The optical thickness can be determined by the independent pixel approximation (IPA), whose accuracy 
degrades with increasing horizontal inhomogeneity of the cloud field and/or increasing horizontal 
resolution of cloud observations (Chambers et al. 1997).  The cloud field considered here is highly 
inhomogeneous in the horizontal; therefore, the use of the IPA for an accurate ∆h retrieval with high 
spatial resolution (∆x~0.275 km) would be problematic. 
 
Cloud Model Specification 
 
The cloud model used here was chosen based on the following general considerations.  First, 
geometrically thick pixels typically have a large nadir reflectance, but for geometrically thin pixels, the 
reverse is true.  Further, the nadir radiance depends nonlinearly on the geometrical thickness.  At our 
initial exploratory stage, it is reasonable to use a simple expression to approximate this unknown 
nonlinear dependence.  The sensitivity of the ∆h retrieval to the choice of the cloud model can be best 
evaluated using cloud models differing by as much as possible.  We chose to use the following two 
models. 
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Figure 1.  The nadir-view Nnadir,obs, average Navr,obs cloud fractions and their difference ∆Nobs = Navr,obs - 
Nnadir,obs as functions of digital count m.  A scale converting m to equivalent nadir threshold I0(θ5) is 
given at the top of the figure. 
 
Model 1.  For each cloud pixel, the vertical cloud height was taken to be proportional to the nadir 
radiance I(θ5) and its square root: 
 

 )()( 515111mod, θ×+θ×+=∆ IcIbah  (6a) 

 
Model 2.  For each cloud pixel, the vertical cloud height was taken to be proportional to the natural 
logarithm of the nadir radiance I(θ5): 
 
 { })(ln 5222mod, θ×+=∆ Ibah . (6b) 

 
The coefficients in both models are obtained by fitting the model to the observations as described in the 
next section.  A set of coefficients is found for each assumed average geometrical thickness. 
 
An example of the probability distributions, pdf{∆hmod}, corresponding to these two models, is 
presented in Figure 2.  As seen, these models differ significantly:  the distribution pdf{∆hmod,1} is 
approximately three times wider than pdf{∆hmod,2}.  Both of these models give physically meaningful 
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Figure 2.  Probability density functions of the cloud geometrical thickness ∆hmod, corresponding to the 
different models.  Both model distributions ∆hmod,1 and ∆hmod,2 have the same average value ∆Hmod = 
0.42 km.  The model geometrical thicknesses ∆hmod,1 and ∆hmod,2 are obtained from Eqs. (6a) and (6b) 
at particular values a1 = 0.01, b1 = 0.01, c1 = 0.03, and a2 = 0, b2 = 0.13. 
 
results (Figure 3).  In particular, large clouds, on average, have larger vertical extent, and the largest 
(smallest) possible ∆hmod values typically occur in the central portion (near the edge) of these clouds 
(Figures 3 and 4).  Smaller clouds, correspondingly, have less mean vertical extent.  The variation of 
∆hmod within small clouds is insignificant.  Since model 2 has a narrower distribution pdf{∆hmod,2}, the 
amplitude of fluctuations of the geometrical thickness ∆hmod,2 is much less than that of ∆hmod,1 (Figures 3 
and 4).  On average, the inequality ∆hmod,2 > ∆hmod,1 occurs for small clouds, and the opposite is true for 
large clouds.  Also, for model 2, clouds have a less “convex” appearance, because the distribution of 
∆hmod,2 within clouds is more uniform.  Consequently, the use of a different cloud model will introduce 
differences between (i) the mean vertical extents of small and large clouds (the amplitude of fluctu-
ations) and (ii) cloud shapes (more or less “convex” appearance). 
 
We now discuss the qualitative dependence of directional cloud fraction N(θ) on the choice of the cloud 
model.  The studied cloud field can be conventionally segregated into small and large clouds.  The 
directional cloud fraction N(θ) can also be divided into three terms:  N1(θ) + N2(θ)+ N3(θ).  The first 
term N1(θ)characterizes the contribution of small clouds to the directional cloud fraction.  The second 
term N2(θ) quantifies the contribution of large clouds to N(θ).  The third term N3(θ) accounts for the 
effects of mutual cloud shadowing and their contribution to N(θ).  Obviously, in the nadir direction, the 
effects of mutual cloud shadowing are absent, that is N3(θ)  = 0.  The value of N3(θ) depends not only 
on the vertical distribution of clouds, but also on how they are distributed in horizontal.  Recall that the 



Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000 

7 

3 6 9 12 15

3

6

9

12

15
a) model 1

 0.97  --  1.0
 0.94  --  0.97
 0.91  --  0.94
 0.88  --  0.91
 0.85  --  0.88
 0.82  --  0.85
 0.78  --  0.82
 0.75  --  0.78
 0.72  --  0.75
 0.69  --  0.72
 0.66  --  0.69
 0.63  --  0.66
 0.60  --  0.63
 0.57  --  0.60
 0.54  --  0.57
 0.51  --  0.54
 0.48  --  0.51
 0.44  --  0.48
 0.41  --  0.44
 0.38  --  0.41
 0.35  --  0.38
 0.32  --  0.35
 0.29  --  0.32
 0.26  --  0.29

x, km

y,
 k

m

3 6 9 12 15

b)  model 2

x, km  
 
Figure 3.  Horizontal distribution of cloud pixels for digital count m* = 14 (nadir radiance threshold 
I(θ5) = 15.7.  For a given value of m = m* the absolute cloud fraction Nobs(m

*) is equal to 0.457.  The 
model geometrical thicknesses ∆hmod,1 and ∆hmod,2 have probability distribution functions (pdf) presented 
in Figure 2. 
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Figure 4.  Vertical cross-section of (y = 2.5 km) of two cloud fields shown in Figure 3. 
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models have an identical horizontal distribution.  For both model 1 and model 2 small clouds have an 
almost uniform cloud top.  Small clouds in model 1 have less geometrical thickness and therefore, on 
average, the inequality N1mod,1(θ) < N1mod,2(θ) holds.  The second term N2(θ) depends on the cloud 
model in a more complex way.  Large clouds in model 1 have larger geometrical thickness and more 
“convex” appearance.  For small ∆H and small oblique viewing angles, on average, the inequality 
N2mod,1(θ) < N2mod,2(θ) holds.  For larger ∆H values and larger oblique viewing angles, the situation is 
opposite (see e.g., the qualitative example in the section on directional and average cloud fraction).  One 
would expect that for small ∆H, the third term N3(θ) will be small, and the inequality Nmod,1(θ) < 
Nmod,2(θ) will occur.  Because the directional cloud fraction N(θ) depends on the cloud models, then the 
average cloud fraction Navr and the difference ∆Nmod also will be functions of the cloud type 
specification.  Obviously, the differences in ∆Nmod,1 and ∆Nmod,2 will introduce differences in the 
retrieved values of ∆hmod,1 and ∆hmod,2. 
 
Vertical Cloud Size Retrieval 
 
The final step of our suggested approach is to determine the model parameters ∆hmod for which 
∆Nmod = Nobs(m

*).  The “tuning” of ∆hmod was done using a fixed horizontal distribution of cloud pixels 
(Figure 3).  For the cloud models considered here, this was done using the following procedure.  An 

initial vertical distribution )0(
1mod,h∆ , for which the average value ∆H(0) = 0.21 km, was specified.  For the 

given vertical distribution, )()0(
1mod, iN θ , 9,,1 K=i , were calculated using the Monte Carlo method.  

Based on these values, the difference )0(
1mod,N∆ =0.078 was finally determined.  This procedure was 

repeated for three additional vertical distributions ∆hmod,1 connected with the initial one; namely, for 
)1(

1mod,
)2(

1mod, 5.1 hh ∆×=∆ , )1(
1mod,

)3(
1mod, 2 hh ∆×=∆  and )1(

1mod,
)4(

1mod, 5.2 hh ∆×=∆ .  Based on these vertical 

distributions, the average vertical cloud sizes ∆H(k) and the differences )(
1mod,

kN∆  4,,2 K=k  were 

finally obtained.  Thereupon, )(
1mod,

kN∆  versus ∆H(k), k = 1, ..., 4, was plotted (Figure 5).  The same steps 

were taken for model 2.  Thereupon, )(
2mod,

kN∆  versus ∆H(k), k = 1, ..., 4, was also plotted (Figure 5).  We 

note that, in the given models, ∆Nmod,1 and ∆Nmod,2 are fairly smooth and monotonically increasing 
functions of the average vertical cloud size ∆H.  As seen, the maximum difference between ∆Nmod,2 and 
∆Nmod,1 takes place for small ∆H values, and this difference decreases with increasing ∆H.  At small ∆H, 
the relative contribution of mutual shading is small.  Hence, the differences between ∆Nmod,1 and ∆Nmod,2 
arise primarily from model 1 to model 2 differences in ∆hmod distributions of both small and large 
clouds.  The qualitative dependence of these terms on each model was discussed above (cloud model 
specification). 
 
The model curves were then used to retrieve ∆Hobs (Figure 5).  The equality ∆Nmod = ∆Nobs takes place 
for ∆Hmod,1 ~0.39 km and ∆Hmod,2 ~0.34 km, correspondingly, for model 1 and model 2.  The retrieved 
values ∆H are within physically acceptable limits.  Despite the great difference between these two 
models (Figure 2), the values ∆Hmod,1 and ∆Hmod,2 differ insignificantly, by approximately 10%.  Hence, 
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Figure 5.  Difference ∆Nmod as a function of the average geometrical thickness ∆Hmod for two different 
cloud models.  The values of ∆Hmod,1 and ∆Hmod,2 such that ∆Nmod,1 and ∆Nmod,2 are equal to ∆Nobs are 
shown. 
 
we can make a preliminary conclusion that, for the given horizontal distribution of clouds, the average 
retrieved geometrical thickness depends weakly on the chosen cloud model.  Therefore, either of these 
models can be used subsequently for further analysis (e.g., optical depth retrieval).  The second model 
depends on fewer parameters and is the simpler of the two; hence, it is more attractive for practical use. 
 

Conclusion 
 
The basic objective of cloud detection from space is to define the spatial arrangement of individual 
clouds, both vertically and horizontally.  The possibility in getting this detailed information from the 
high-resolution MISR observations is the purpose of this article. 
 
The suggested approach allows one to determine both the horizontal distribution of cloud pixels, and 
their geometrical thickness ∆h from the angular variations of the measured radiances.  As a case study, 
MISR images of small marine cumulus clouds were chosen.  The obtained results demonstrate that 
multiangular MISR data have the potential for measuring individual cloud geometry.  However, further 
testing is needed to better understand the limits and accuracy of the approach.  With this aim in mind, 
we will verify the suggested geometrical thickness retrieval ∆h with independent data.  The retrieved  



Tenth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 13-17, 2000 

10 

cloud geometrical properties can serve as a basis for estimating optical ones from additional radiative 
modeling.  The retrievals of cloud optical properties from MISR data will be a subject of our future 
investigation. 
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