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Introduction

Cloud layers may simultaneously occur at different atmospheric levels, and two or more cloud layers
may not be uncommon during passage of atmospheric fronts or disintegration of massive cumulus or
cumulonimbus clouds.  Frontal cloud layering throughout the troposphere over the European part of the
former USSR was studied by Baranov (1983):  on an annually mean basis, the clouds occur in a single
layer in 40% to 50% of the cases, in two layers in about 30% to 40% of the cases, and in three or four
layers in 10% to 30% of the cases.

Presently, well-developed methods exist for calculating radiation effects of horizontally homogeneous
multilayer clouds (Lenoble 1990).  However, when clouds in at least one layer are broken, the radiation
calculations use approximate methods developed within the framework of deterministic radiative
transfer theory.  This circumstance makes them especially attractive for practical usage, such as for
calculating shortwave influxes in atmospheric general circulation model (GCM) radiation codes.  The
approach is seriously deficient in that the methods have never been subjected to rigorous tests.

Using the Poisson model of broken clouds, we obtained equations for mean intensity and developed a
Monte Carlo algorithm for calculating the mean fluxes of solar radiation in two-layer clouds.  The
purpose of this work is to test, against the algorithm proposed here, the accuracy of the approximate
method for calculating the mean fluxes in two-layer broken clouds.  This will ascertain the applicability
range of a horizontally homogeneous cloud model for the class of problems dealing with calculations of
the energy characteristics of two-layer clouds.
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Model

The cloudy-aerosol atmospheric model is defined in the height interval t
atmHz0 ≤≤  as K separate

atmospheric layers (Figure 1).  A unit solar flux is incident on the atmospheric upper boundary t
atmHz =

in the direction ( )⊕⊕⊕ ϕξ=ω ,
r

, where ξ⊕ and ϕ⊕ = 0 are zenith and azimuthal solar angles.
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Figure 1.  Schematic illustration of the cloudy aerosol
atmosphere containing two layers of broken clouds.

Cloud model.  Clouds occupy two separate layers Λi, i = 1,2, with subscript i = 1 corresponding to the

lower, and 2i =  to the upper layer.  Each cloud layer is characterized by the heights i,b
clH  and i,t

clH  of

the bottom and top boundaries:  i,t
cl

i,b
cl HzH ≤≤ , i = 1,2; 2,b

cl
1,t

cl HH ≤ .

Within Λi, the optical model is specified in terms of the random scalar fields of the extinction coefficient
σλ,I(r)κi(r), single scattering albedo ωλ,i(r)κi(r), and scattering phase function gλ,i(ω, ω′,r)κi(r), i = 1,2;
the subscript “λ“ stands for a wavelength.  The random fields κ1(r) and κ2(r) are assumed independent
of each other; and the mathematical model of κ1(r), i = 1,2, is constructed based on the Poisson point
fluxes on the straight lines (Titov 1990).  Optical characteristics inside an individual cloud are assumed
constant.
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Each ith aerosol layer is assumed horizontally homogeneous, and it is characterized by the extinction

coefficient a
i,λσ , single-scattering albedo a

i,λω , and scattering phase function ( )ω′ωλ
rr

,ga
i, .

The underlying surface reflects the incident radiation according to Lambert law and has the albedo As.

Calculation Methods

Method of closed equations.  In an earlier work, based on the Poisson model of one-layer broken
clouds, Titov (1990) derived a system of closed equations for mean intensity in the case of statistically
homogeneous cloud fields, and developed an algorithm of its solution by the Monte Carlo method
(MCE).  Here those results are generalized to the case for two-layer broken clouds under the assumption
that the random fields κi(r), i = 1,2, are independent and statistically homogeneous.

Approximate calculation technique.  The approximate method for calculating radiative fluxes under
conditions of two-layer broken clouds is defined by the formula:

+×+×= ======== 2clr,1pp2clr,1pp2clr,1clr2clr,1clr FKFKF
2pp,1pp2pp,1pp2pp,1clr2pp,1clr

FKFK ======== ×+× .

Here Fclr=1,clr=2, Fpp=1,clr=2, Fclr=1,pp=2, Fpp=1,pp=2 are clear-sky (“clr”) and overcast (“pp”) values of F in one-
and two-layer clouds, calculated from a deterministic radiative transfer equation.  They are used with
weights, chosen in accordance with an employed hypothesis of cloud overlap.  Of three known
hypotheses, i.e., of minimum, maximum, and random overlap, GCMs generally use the latter two or
their combination.  A combined use assumes maximum overlap for contiguous cloud layers (e.g., those
located at the same atmospheric level) and random overlap for widely separated layers (e.g., those
located at different atmospheric levels) (Mokhov et al. 1994).

Let N1 and N2 be the cloud fractions in the lower and upper cloud layers, respectively.  Then, the
upward/downward solar radiative fluxes F↑(↓) at an altitude level z for the hypothesis of random overlap
are given by formula:

( ) ( ) ( ) ( ) ( ) ( )zFN1N1zF
2clr,1clr21rand

↓↑

==

↓↑ ×−×−=
+ ( ) ( ) ( )zFN1N

2clr,1pp21

↓↑

==×−×

+ ( ) ( ) ( )zFN1N
2pp,1clr12

↓↑

==×−×
( ) ( )zFNN

2pp,1pp21

↓↑

==××+
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Calculation Results

The mean fluxes in two-layer broken clouds are calculated by the method of closed equations, ( )↓↑
MCEF ,

and by the approximate method using the hypothesis on random cloud overlap, ( )↓↑
randF .  The relative

differences between radiative fluxes ( )↓↑
MCEF  and ( )↓↑

randF  will be characterized by the quantity

( )( ) ( )( ) ( ) ( )( ) ( ) ( )zFzFzF%100zF MCEMCErand
↓↑↓↑↓↑↓↑ −×=δ .

Cloud Parameters.  Fluxes of visible solar radiation are calculated for characteristic optical and
geometrical parameters of typical cloud systems (St) – (As), (St) – (Ci), (Cu) – (As), (Cu) – (Ci) at
midlatitudes of the Northern Hemisphere (Handbook of clouds and the cloudy atmosphere, 1989),
wavelength λ = 0.69 µm.  The scattering phase function of water clouds was calculated from Mie theory
for cloud C1, and the flux calculations for ice clouds use a scattering phase function of randomly and
horizontally oriented hexagonal ice crystals (Takano and Liou 1989).  Single scattering albedo ωi = 1,
i = 1,2.  Aspect ratio γi Hi / Di (where Hi and Di are the thickness and characteristic horizontal size of the
cloud elements of the ith cloudy layer) in most calculations varies in the range 0 ≤ γi ≤ 2, i = 1,2.  Aspect
ratios γ << 1 correspond to stratus, and 0.5 ≤ γ ≤ 2 to convective clouds.  Surface albedo As = 0.

Comparison of Calculated Results.  To better understand the radiative transfer in two-layer clouds, we
will consider two extreme cases, when one layer is overcast while the other is broken.

Case 1.  Suppose that N1 = 1 and N2 < 1, which means that the broken cloud layer Λ2 is located over a
horizontally homogeneous reflecting surface Λ1.  We will consider cloud cases corresponding to
intermediate cloud fractions N2.  As calculations showed, at ξ⊕ ≤ 75° and for optical depths 10 ≤ τ1 ≤ 40,

1 ≤ τ2 ≤ 25 (τ = 1 for ice clouds and τ ≥ 4 for water clouds) the values of ( )2,t
clHF↑δ  and ( )1,b

clHF↓δ  do

not exceed 5% to 8% when 0 ≤ γ2 ≤ 2 (Figure 2a).  The difference between mean upward fluxes ↑
MCEF

and ↑
randF  at the level z = 2,t

clH  translates into the difference of up to ≈-20% between ↑
MCEF  and ↑

randF  at

the level of the bottom boundary of the layer Λ1 (Figure 2b).

Case 2.  Suppose that N2 = 1, N1 < 1 (placement of overcast cloud layer Λ2 over the broken layer Λ1 is
equivalent to redefining boundary conditions for underlying cloud layer and switching from a
monodirectional source of radiation to a diffuse one).

When the upper layer Λ2 is optically thin, it is expected that part of the comparison between the two
methods of mean flux calculations can be made using earlier results of Skorinov and Titov (1984).
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Figure 2.  Mean upward and downward radiative
fluxes and relative difference ∆F↑(↓) (in %) at the
boundaries of (a) top cloud layer Λ2 and (b) bottom
cloud layer Λ1 for N1 = 1, τ1 = 40, N2 = 0.5, ξ⊕ = 75°,
and different aspect ratios γ2.

Indeed, consider two typical cloud systems, (St) – (Ci) and (Cu) – (Ci).  When γ1 << 1, over almost

entire ranges of input model parameters (10 ≤ τ1 ≤ 40 and ξ⊕ ≤ 75°) ( )2,t
clHF↑δ  and ( )1,b

clHF↓δ  do not

exceed 5%.  If the lower layer is occupied by cumulus clouds, at small and intermediate cloud fractions

( )2,t
clHF↑  and ( )1,b

clHF↓  differ stronger between the models:  at γ1 = 2, ( ) %)15to%10(HF 2,t
cl −≈δ ↑  and

( ) %30to%10HF 1,b
cl ≈δ ↓ .

Now we assume that the upper cloud layer has large optical depth:  τ2 = 25 (middle-level As clouds).
The upward flux at the level of the top boundary of two-layer clouds z Hcl

t= ,2  consists both of photons

scattered only within Λ2 and photons participating in radiative exchange between the cloud layers.  As

calculations show, the layer Λ2 by itself contributes to ( )2,t
clHF↑  more than 70% to 90%.  As a

consequence, ( )2,t
clHF↑  values, calculated by different methods, agree well over almost the entire range
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of input model parameters:  ( ) %5HF 2,t
cl ≤δ ↑ .  For intermediate values of optical depth 1 < τ2 < 25, the

difference ( )2,t
clHF↑δ  may reach 10%, and the largest ( )1,b

clHF↓δ  value may be ≈-(10÷15)%.

We now assume that the upper and lower layers are filled with partial cloudiness:  N1 < 1, N2 < 1.
Calculations are made for cloud fractions Ni, i = 1,2, most typical for low-, middle-, and high-level
clouds in midlatitude summer of the northern hemisphere (Meleshko 1980):  0.3÷0.5 for low clouds,
0.2÷0.3 for midlevel and high clouds.

For cloud system (St) – (Ci) the relative difference δF↑(↓) does not exceed 10%.  Increasing aspect ratio
γ1, i.e., switching to the system (Cu) – (Ci), has diverse effects on δF↑(↓):  δF↑(↓) ≤ 10%  for τ1 = 10 and
ξ⊕ = 30°; however δF↑(↓) increases to tens of a percent when τ1 = 40 and ξ⊕ = 75°.  For instance, at

γ1 = 2, N1 = 0.5 and N2 = 0.3, ( )2,t
clHF↑δ ≈-25%, while ( )1,b

clrand HF↓  greatly exceeds ( )1,b
clMCE HF↓ :

( ) %60HF 1,b
cl ≈δ ↓  (Figure 3).

Conclusion

Mean fluxes of solar radiation in two-layer broken clouds are calculated using two methods:  1) an
approximate method (based on the assumption of random cloud overlap) and 2) the method of closed
equations, based on the Monte Carlo solution of the system of equations for the mean intensity.  The
MCE not only accounts for the stochastic cloud structure, but also, in comparison with the approximate
method, provides a more exact description of radiative interaction between broken cloud layers.

It is shown that the relative differences between upward fluxes at the top boundary of layer Λ2 and
between downward fluxes at the bottom boundary of layer Λ1 in the cloud system (St) – (Ci) generally
do not exceed 5% to 10%.  When the upper layer Λ2 is occupied by the water clouds of moderate optical
depth ( )254),As()St( 2 ≤τ≤− , increases in τ1 from 10 to 40 and in ξ⊕ from 30° to 75° may cause

( )2,t
clHF↑δ  and ( )1,b

clHF↓δ  to increase up to ≈20%.  In the cloud systems (Cu) – (Ci), (Cu) – (As), the

mean fluxes ( )2,t
clHF↑  and ( )1,b

clHF↓  depend fairly weakly on the calculation technique when optical

thickness of the cloud layer Λ1 is relatively small (τ1 = 10) and when ξ⊕ ≤ 30°:  ( )2,t
clHF↑δ  and

( )1,b
clHF↓δ  typically are within 5% (rarely amounting to 10%).  The larger that either the optical depth of

the cloud layers or the zenith solar angle is, the greater the difference between mean fluxes.  For

instance, the approximate method may underestimate ( )2,t
clHF↑  and overestimate ( )1,b

clHF↓  relative to

MCE values by 25% to 30% and 50% to 60%, respectively.

This work was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement
Program under contract No. 352654-A-Q1.
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Figure 3.  Mean upward and downward radiative
fluxes and relative difference ∆F↑(↓) (in %) at the
boundaries of (a) top cloud layer Λ2 and (b) bottom
cloud layer Λ1 for N1 = 0.5, τ2 = 1, N2 = 0.3 γ2 << 1,
and different parameters of the lower cloud layer and
illumination conditions.
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