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Introduction

Optically speaking, the earth’s cloud-laden atmosphere is a complex scattering/absorbing medium,
bounded from below by its spatially variable, often rough, semi-reflective surface.  In typical situations,
several cloud layers are present, some broken, some not, some dense, some not.  The key quantity in
solar transport is extinction and it varies spatially from vanishingly small Rayleigh-dominated values in
cloud-free areas, hence huge mean-free-paths (MFPs), to many hundreds of km-1 in dense cloud or fog,
hence photon MFPs (essentially “visibilities”) of only a few meters.  Figure 1 shows a few photon
trajectories that illustrate schematically the huge variance in free path.  In such a medium, it is not even
clear how to define the MFP, which is after all, just the mean of the free-path distribution.

At visible (VIS) wavelengths, incoming solar photons are eventually reflected back to space or absorbed
by the ground, so their trajectories are bounded random walks.  However, there are large cloud-to-cloud
or cloud-to/from-surface jumps as well as jumps inside the clouds that are enhanced by the internal
variability; so the key assumption of many small steps in standard one-dimensional (1-D) diffusion
theory is highly questionable.  Notwithstanding, this problematic theory is the physical basis of all
current 2-stream parameterizations in general circulation models (GCMs).  Even in a given layer,
domain-average extinction and the associated exponential free-path distribution is not enough to fully
characterize photon transport.  Rather, we can anticipate photon free-path distributions with much longer
tails.  In an attempt to reduce the complexity of three-dimensional (3-D) radiative transfer into a 1-D
setting, we will therefore postulate “Lévy-stable” or “α-stable” jump distributions, which are
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Figure 1.  Schematic representation of typical solar photon paths, as observed from
the ground.  Note the frequent occurrence of long free paths in cloud-cloud and cloud-
surface exchanges, as well as the enhanced free paths due to internal cloud
variability.

characterized by power-law decays.  They depend, beyond the MFP, on a single new parameter, the
Lévy index a, which varies between 0 and 2.  This puts us into a more general framework to model the
photon diffusion (or random-walk) process where “anomalous” laws arise, i.e., photon-to-source
distance increases with the 1/α-power of time, greater than the usual 1/2-power.  We retrieve the

standard case however in the limit α → 2−.  Because of the sure occurrence of large jumps and the
associated faster-that-diffusive transport, random walks with Lévy-distributed steps are often called
Lévy-flights.”  Popularized by Mandelbrot (1982), Lévy-flights have found many applications in

statistical physics, chaos theory, fluid dynamics, biology, and finance (e.g., Cambanis et al. 1991;
Shlesinger et al. 1995).

The first to focus on Lévy transport in bounded domains, Davis and Marshak (1997) derived asymptotic
formulas for transmission probability and mean pathlengths in transmission and reflection that
generalize the standard Gaussian case (α = 2) to the Lévy case (α < 2).  By comparison with detailed
numerical simulations, these analytic results demonstrate that the Lévy-flight model is a reasonable 1-D
approximation to 3-D radiative transfer in an atmospheric column (Davis et al. 1999) with respect to
domain-average properties.  Pfeilsticker et al. (1998), recently derived solar photon pathlength
distributions from ground-based observations of high-resolution oxygen A-band spectra for
down-welling zenith radiance under a wide variety of cloud conditions.  Pfeilsticker (1999) used these
data to empirically determine values of the Lévy index that populate the range 1 ≤ α ≤ 2.  More
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precisely, he finds α ≈ 2 (steps are Gaussian) under completely overcast skies where a diffusion-domain
exists in the sense of King (1987), and he finds α ≈ 1 when the clouds are very sparse (the MFP actually
diverges in this limit, meaning that a single jump is often enough to go from top of [the] atmosphere
[TOA] to the ground or vice versa); a large number intermediate cases are also observed.  This is
essentially, what one expects from first principles and brings strong support to the emerging non-
standard 1-D model for bulk solar transport in cloudy skies based on Lévy-flight theory.

In the following sections, we will describe non-technically the properties of Lévy-flights in the logical
progression from infinite, to semi-infinite, and to finite domains (including the empirical evidence).
Finally, we discuss consequences of the Lévy model for gaseous absorption in the near infrared (NIR)
and we report progress towards a new parameterization for shortwave transport in GCMs.

Stable Random Variables

In probability theory, “stability” describes random variables (RVs) that are, in some sense, invariant
under addition.  This makes them particularly attractive when modeling random walks.  Gaussian
deviates are the best known example of stability:  the sum of n Gaussian RVs is Gaussian with mean and
variance obtained by summing those moments for its n components.  In general, we ask what
independent identically distributed (i.i.d) zero-mean symmetric RVs si (i = 1,n) obey

1n
d

n

1i
i sas∑

=
(1)

where “d” means equal in distribution.  Lévy (1937) showed that the only solutions to this problem have

an = n
1/α

(2)

with α ∈ (0,2], and a characteristic function for all s of the form

)kexp()s(dP)iksexp()iksexp( L
α
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with σL ≥ 0 being a natural amplitude parameter.  (Angular brackets +A, designate ensemble- or sample-

averages throughout the paper.)  The well-known Gaussian solution has α = 2 and variance 2σL
2, so its

probability density function (PDF) is

dP2(s)/ds = (1/2σLπ1/2) x exp[−(s/2σL)2]. (4a)

Another solution is the Cauchy case with α = 1 and PDF given by

dP1(s)/ds = (1/πσL) / [1+(s/σL)2]. (4b)
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These are the only two cases of α-stability with PDFs known in closed form.  Interestingly, these two
PDFs are the familiar components of the Voigt line profile in spectroscopy:  a Doppler core (α = 2), and
collisional Lorentzian wings (α = 1).

The main utility of the characteristic function is that its Taylor series expansion at k = 0 yields the
moments of s:

( ) ,2/)ik(siks1)iksexp( 22 K+〉〈+〉〈+=〉〈 (5a)

as long as all the integrals

K,2,1,0q),s(dPss qq ==〉〈 α∫ (5b)

exist (i.e., are finite).  Direct consequences of Eq. (3) are, on the one hand, that +s, and other odd-order
moments vanish by symmetry and, on the other hand, all the even-order moments exist only if α = 2.  If
α < 2 then +s2, = 4.  However, a straightforward asymptotic analysis shows that

{ } ;X~)s(dPXsP
x

α−
α

∞
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so real-order absolute moments 〈|s|q〉 = I|s|q dPα(s) < 4 only if q < α.  Equation (6) contrasts strongly
with the classic result from Beer’s law:  P{s > X} = a-X where a depends on extinction.

In summary, α-stable RVs have infinite variance (q = 2) and even infinite (absolute) means if α # 1.  It
is important to note that Lévy RVs play the same role as Gaussian RVs with respect to the law of large
numbers:  PDFs of sums of arbitrary RVs with finite variance tend asymptotically towards Gaussians;
PDFs of sums of arbitrary RVs with infinite variance tend asymptotically towards Lévy PDFs.

Finally, there is a simple method for generating symmetric α-stable RVs using uniformly distributed
pseudo-RVs ξ ∈ (0,1) that are available in most computer languages or numerical packages.  Letting
ϕ  =  π(1/2−ξ) be uniform on (−π/2,+π/2) and w = −lnξ exponentially distributed with unit mean, then

s = (sinαϕ/(cosϕ)
1/α) x (cos((1−α)ϕ)/w)(1−α)/α

(7)

is a unitary (σL = 1) symmetric α-stable RV (Samorodnitsky and Taqqu 1994).  For α = 2, this reverts to
the Box-Muller transform method for generating normal deviates (with variance 2) and, for α = 1, we
retrieve the simple formula for unitary Cauchy deviates s = tanϕ.

Unbounded Random Walks and Flights

How do we measure particle transport by random walks or flights?  The simplest is to define a measure
of distance to a source of particles and figure how it evolves with “time,” i.e., the number of steps/jumps
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or total path covered at some (presumably constant) velocity.  To address this question for α-stable step
distributions, we return to the sum of i.i.d. symmetric RVs in Eqs. (1) and (2), this time in a 3-D setting:

∑
=

α ΩΩ=
n

1i
11

/1
iin ,sndsr (8)

where the Ωi are unit vectors independently distributed in uniformly random directions.

In the Gaussian case α = 2, we can square Eq. (8) and average over all realizations.  The crossed terms
vanish for lack of correlation between different si’s and we find

∑
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This is just the expression of the additivity of variances of i.i.d. RVs (means of course are also additive,
but trivially here because they all vanish).  Equivalently, Eq. (9) tells us the root mean square (rms)
distance covered by the random walking particle goes as the square root of time.  This is the basic law of
(standard) diffusion theory.

In the Lévy α < 2 case, the above computation is no longer possible because +s1
2, = 4.  However, we still

have

,21,ns
2

1
z /1

1n ≤α<〉〈=〉〈 α (10)

and similarly in the other directions (+*Ωz*, = 1/2 for isotropic steps).  This reads as an anomalous
diffusion law if α < 2.

Figure 2 illustrates the dramatic changes in the self-similar geometrical properties of the random walk
rn as α  is decreased from 2 to 1.5 and 1.05.  The most notable feature of the α < 2 cases is the relatively
frequent occurrence of jumps with magnitudes at par with |zn|.

Random Walks and Flights in a Semi-Infinite Domain

We are interested in the probability of escape at step nR of a random walking particle from a semi-
infinite domain that it is injected into at step 0 (subscript “R” stands for reflection).  It was recently
proven by Frisch and Frisch (1995) that this probability is given by:

PR,4{nR > N} = (2N)!/[2N(N!)]2 ~ N–1/2, as N → 4. (11)
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Figure 2.  Samples of unbounded random walks (α = 2) and flights (α = 1.5 and 1.05).  3-D
random walks and flights were generated using steps from Eq. (7) in isotropically distributed
directions.  Notice the rapidly increasing scales from top to bottom.  Left-hand side:  z(n) with
predictions of average position according to Eq. (10).  Right-hand side:  projection of the
1000-step random walk or flight onto the x,y-plane.

This result does not require that any finite moments exist, only that the steps are symmetrically
distributed.  Note that, in spite of the fact that nR = 1 with probability 1/2, we have +nR, = +nR

2, = 4.
This is in fact a reminder that, without variance-reduction techniques, Monte Carlo simulations in non-
absorbing semi-infinite scattering media will take a long time to execute and/or will lack accuracy.
(Incidentally, other numerical schemes such as discrete ordinates also fail in this semi-infinite case.)
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Observable Quantities for Bounded Random Walks and Flights

Equations (10) and (11) are the basic ingredients for the asymptotic theory of anomalous diffusion in
bounded media, where Lévy-stable (or power-law with divergent variance) step distributions replace the
standard exponential or Gaussian ones.  All we need is a truncation value in Eq. (11) that depends on the
physical thickness H of the medium; this is essentially the average order-or-scattering +nt, for
transmitted photons (subscript “T” stands for transmission).  For instance, transmission probability is
approximated by T(H) ≈ PR,∞{nR ≥ +nt, (H)}.  To obtain +nT,(H) we turn to Eq. (8) and ask, “What is the
average of the random n associated with the first occurrence of rn ≥ H (i.e., transmittance)?”  Taking a
heuristic look at Eq. (10), we set zn = H and “solve” for this average:

+nT,(H) ~ (H/+l,)α (12)

where the notation +l, is introduced for the MFP +|s|,.  The ratio of the “inner” +l, and “outer” H scales
of the random walk that appears in Eq. (9) can be equated to optical depth τ, at least for 1  < α ≤ 2.

Note that τ and +l, are the optical depth and MFP for isotropic scattering, also called “transport” optical
depth and MFP (Case and Zweifel 1967).  Assuming g ≈ 0.85 (the canonical value for liquid clouds, as
obtained from Mie theory), this leads to 1/(1-g) ≈ 6.7 times more than the usual MFP +lMie, for forward-
peaked scattering and (1-g) ≈ 0.15 times less than the usual optical depth τMie.

In essence, we have generalized here the well-known statement that +nT, goes as τ2, which is what
Eq.  (12) yields for α = 2.  It is important to note here that, because of the boundedness of the domain, all
bulk quantities such as the pathlengths discussed below have finite moments of all orders, even though
they may be based on local properties such as step distributions that have diverging moments.

Transmission and Albedo

The suggested truncation of the PDF in Eq. (11) using Eq. (12) leads directly to

T(H) ~ (H/+l,) –α/2
 ~ [(1−g)τMie]

–α/2
. (13)

Equation (10) yields the proper 2-stream limit when α = 2, namely (Meador and Weaver 1980):  T(τMie)
~ [(1-g)τMie]

-1.  Furthermore, it was checked to high numerical accuracy by Davis and Marshak (1997)
for α < 2 using the method of generating α-stable steps in Eq. (7).

It is clear that T(H) increases as the variability parameter α in Eq. (10) decreases away from its upper
limit 2, the value we can map to homogeneous situations.  This was indeed the original motivation of the
model, to explain in a 1-D setting the widely known effect of 3-D variability on radiative transfer in
cloud layers at non-absorbing wavelengths:  albedo R = 1 –T is reduced, transmission T enhanced for a
given domain-average optical depth (McKee and Cox 1974; Romanova 1975; Davies 1978; and others).
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Figure 3 uses numerical simulations of 1-D trajectories of transmitted Lévy/Gauss particles to illustrate
1)  the increase in T(H) with the decrease of α below 2 predicted in Eq. (13), and 2) the decrease in
average number of steps for transmitted photons predicted in Eq. (12).  In the extreme α = 2 case,
propagation is very slow and the chance of direct transmission through this slab, about 18 times thicker
than the standard deviation of the step, is almost nil.  The atmospheric analog is a single well-defined

Figure 3.  Gaussian walks and Levy Flights through a dense medium.  These simulations were
selected out of a 100 or so, where all the other trajectories ended in a reflection, some after a
very small number of steps, and some after a rather large number of steps when they turn-
around just as a transmission almost occurred.
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cloud layer, which is optically-thick and only weakly variable, e.g., a stratocumulus deck in the
boundary-layer (so the numerical value to assign to H is quite small, 1 km at most).  In contrast, the
other extreme α = 1.05 case exhibits a significant number of direct transmissions that occur without any
modification of the multiple-scattering algorithm except the change in α and, otherwise a quite rapid
transit through the system is obtained.  The atmospheric analog here is a whole cloudy column
stretching from the surface to the tropopause (so H is now on the order of 10 km) with several internally
variable cloud layers, either optically thin over extended areas or substantially broken, e.g., the situation
pictured in Figure 1.  This 3-D variability promotes the large jumps that occur naturally in the Lévy
model, never within the standard Gaussian framework that supports the diffuse component in all current
2-stream parameterizations.  The intermediate α = 1.5 case could be mapped to an internally variable
single-layer cloud system.

Pathlengths for Transmitted Solar Photons

There is now another observable quantity, which we can use to validate the Lévy-flight model, namely
mean pathlength for transmitted solar photons +LT,.  This is made possible thanks to recent
developments in ground-based high-resolution spectrometry applied to the oxygen A-band (Pfeilsticker
et al. 1998; Min and Harrison 1999).  The specific theoretical prediction for +LT,, as given by

+lMie,+nT,Mie,(H) = +l,+nT,(H) in Eq. (9), is +LT,(+l,,H) ~ +l,1−α
H

α
, or:

+LT,(g,+lMie,,H) ~ (1−g)
α−1

 +lMie,
−(α−1)

H
α
. (14)

Figure 4 shows Pfeilsticker’s (1999) data for +LT, and H, both pressure-corrected to account for the
strong stratification of the oxygen, overlaid with the predictions in Eq. (11) for 1 ≤ α ≤ 2.  The
agreement is remarkably good given the observational uncertainties.  Instrumental details and further
discussion are provided by Pfeilsticker et al. (1998) and Pfeilsticker (1999).  Note that the g-dependent
prefactor in Eq.  (14) was not used in this last paper, nor in Figure 3 of Davis et al. (1999); we see here
that it makes the range of predictions of the Lévy-flight model more narrow and therefore easier to
prove false.  This correction notwithstanding, the new model is still compatible with the data, given the
error bars assigned a priori to each datum.

Summary, Discussion, and Outlook

We have surveyed the properties Lévy-stable processes unfolding in 3-D infinite and semi-infinite
domains, as well as finite 1-D domains.  The last case has direct application to the representation of bulk
short-wave radiative transfer processes in complex 3-D geometry with a tractable 1-D model.  The
simple Lévy-flight model for solar photon transport in cloudy atmospheric columns makes specific
predictions for quantities readily observable from the ground such as (direct and diffuse) transmission(s)
and mean pathlength.  The best observations to date support the model.
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Figure 4.  Empirical scatter plot of means pathlength in zenith-radiance versus cloud-layer
thickness and Lévy-model predictions.  Both lengths are pressure-corrected (hence, the
primes in the notations) and non-dimensionalized with MFPs.  These were obtained assuming
climatology but generous uncertainties were assigned to +lMie, and incorporated into the
instrumental error bars.  The overlaid solid lines are given by Eq. (14), assuming a unit
prefactor.  As expected from first principles, the observed range of α-values decreases (top to
bottom) from 2 to 1 going from completely overcast to almost clear conditions.  Note that the
impression given here that smaller α leads to smaller pathlengths at a given cloud optical
thickness can be off-set and even reversed by the natural variability in H, defined here as the
physical thickness of the whole cloud system (see discussion of Figures 1 and 3).

The most stringent test on the model is based on Pfeilsticker’s (1999) spectroscopic observations in the
oxygen A-band, 768.15 nm to 771.7 nm at 0.0036 nm resolution.  Min and Harrison (1999) have
recently published some very interesting scatter-plots of τMie versus +LT, obtained at Atmospheric
Radiation Measurement’s (ARM’s) Southern Great Plains (SGP) site from A-band measurements at
moderate (9 nm) spectral resolution obtained from the Rotating Shadowband Spectroradiometer (RSS).
They tend to find longer +LT,’s as the cloud situation becomes more complex, for a given τMie.  This is
consistent with the Lévy picture in our Figure 4 because of the different normalization conventions:
plotting +LT, in airmasses (essentially one scale-height in our notations) rather than in MFPs.  Further
analyses are required to ascertain whether the ARM data consolidates or challenges the Lévy-flight
model.  At any rate, similar findings of longer-than-expected +LT,’s using the oxygen B-band and a
weak O2 – O2 band have also been brought to our attention (Susan Solomon, private communication).
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In its status, the Lévy-flight model is well suited for parameterizing short-wave transport in a
hypothetical single-layer GCM.  Indeed, the model has no way of refining its predictions with
information about where the clouds occur in the vertical and what their horizontal properties may be in a
given layer.  This enhancement would likely call, at a minimum, for an altitude-dependent Lévy index
α.  This is the variability parameter of the model, leading back to a standard 2-stream prediction in the

limit α → 2−.  Also needed is a formulation of the model with differential equations and boundary
values.  Precisely such formalism, for the moment only for initial-value problems however, has recently
been developed by Meerschaert et al. (1999) using fractional-order derivatives.

How does the Lévy-flight model impact gaseous absorption?  Pfeilsticker (1999) raises the point that, at
the free-path (scatter-to-scatter) level, α-stable step distributions will systematically broaden spectral
lines, equivalently, enhance absorption in the continuum.  Taking a more global standpoint, we see that
as α decreases below 2, +nT, decreases for a given rescaled optical depth (H/+l,) in Eq. (12); however,
one can argue that the MFP is inexorably increasing as α decreases, so mean pathlengths +LT,, which are
more relevant to absorption by well-mixed gases can likely go either way.  Anyway, mean pathlengths
may not be enough and we may need to look at their whole PDF.  Finally, to make inferences about
column absorption from pathlength information, we need it at both boundaries, i.e., for transmission and
for reflection.  Davis and Marshak (1997) derived mean quantities, +nR, and +LR,, for the later case but
we need airborne A-band data for validation while waiting for the PICASSO/CENA and CloudSat space
instruments.  In short, the Lévy-flight model’s impact on gaseous absorption remains an open question,
which is in good keeping with what 3-D cloud variability has had to say about the issue of short-wave
column absorption enhancement in presence of clouds:  it can go one way or the other (e.g., O’Hirok
and Gautier 1998; Marshak et al. 1998).
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