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Abstract

Clouds are of paramount importance for the global energy
balance and, thereby, our climate.  Changes in cloud cover
and phase (liquid water versus ice), for example, through
increased greenhouse forcing, may have significant and as
of yet unknown impacts on our climate.  The global climate
models (GCMs) designed to predict future climate, usually
model the effects of clouds using the scattering and
absorption properties of spherical particles at high latitudes
as well as at high enough altitudes anywhere on our planet.
This leads to errors of undetermined magnitude because the
clouds there consist of ice crystals that are far from
spherical in shape.  Ice particles usually take on needle-like
or flat, disk-like shapes.  The GCMs therefore cannot
correctly predict the evolution of our climate.

We have developed a new method for calculating the single
scattering solution for spheroidal particles.  The single
scattering solution is needed for every particle shape that we
want to include in a GCM.  The spheroidal particles can
easily be made to closely resemble actual ice particles, and
we can hence, more accurately model the scattering and
absorption of radiation by polar and high altitude clouds.
An important part of the single scattering solution for
spheroidal particles is the calculation of the expansion
coefficients that we need in the angular and radial
spheroidal functions.  Problems that hampered previous
implementations for finding these coefficients have been
overcome, and we can now handle realistic sizes and shapes,
as well as particle absorption in an effective manner.

In this paper, we present our new method for computation of
expansion coefficients.

Introduction

In the separation of variables method (SVM) for scattering
by spheroidal particles, a critical point is the calculation of

the eigenvectors (or coefficients) for the corresponding
eigenfunctions.  Traditionally, the method attributed to
Bouwkamp (1941) is used for this purpose.  Here, we
present a new method that yields high precision eigenvalues
as well as the eigenvectors (coefficients) needed in the
eigenfunction expansions.  This is accomplished in an
efficient and reliable manner using readily available
computer routines.  The method is not limited to real or
purely imaginary values of the size parameter c, and high
precision results have been obtained as well for values of c
(c ≤ 40) for which benchmark results are available.  When
we use this method together with routines for calculating the
spheroidal functions, we get excellent agreement with
published results (Hanish et al. 1970; Van Buren et al.
1975), but we need to conduct further tests to establish if
this new method constitutes an improvement compared to
Bouwkamp’s method.

In a companion paper (Schulz et al. 1998a), a method for
computing the T-matrix with the SVM is presented.  In this
paper, we show results obtained by using our method to
compute the coefficients and this modified SVM approach,
and we give an overview of our current and future work on
this subject.

The Spheroidal Differential
Equation

As is well known, the Helmholtz scalar wave equation

( ) 0k22 =Ψ+∇  is separable in the spheroidal coordinate
system.  The solution is given by

)()(R)(S φΦξη=Ψ (1)

where S, R, and Φ are the angular, radial, and azimuthal
components, respectively.  As an example, the radial
function of the first kind for the case of a prolate spheroidal
particle can be written as
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where ),c(Nmn
k ξ  is a normalization constant, and the

indices m and n determine the kind and order of the

functions, respectively.  In this case, the function ( )ξ,cR )1(
mn

is an infinite expansion in spherical Bessel functions,

( )ξ+ cj rm , with expansion coefficients )c(dmn
k .  The

angular functions S are given in a similar fashion as
expansions involving the same expansion coefficients.  The
major problem in computing these functions is calculating

the expansion coefficients )c(dmn
k .

All the differential equations for this problem are of the
form
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where u = R,S, z = η,ξ, and λ and µ are separation
constants.  It is easily seen that this equation has three
singularities.  At z = ± 1, we have two regular singularities,
and at z = ∞ we have an irregular singularity.  If we express
this solution by a series of known mathematical functions,
we get recursion formulas for the expansion coefficients.  It
is found that these series solutions only will converge for
certain λ, denoted by λµν.  Furthermore, we are only
concerned with those solutions that satisfy the wave
equation inside or outside a prolate or oblate spheroid.  That
is, we require the series solutions to be single-valued and
finite at the poles.  In order for this to be true, the constants,
µ and ν, have to be integers (Meixner and Sch@fke 1954).
We denote the eigenvalues by λmn instead of λµν for this
reason.  Furthermore, we can restrict m to be zero or
positive.

Recurrence Relations

We want to determine the eigenvalues λmn for those
solutions of Eq. (3) that are finite at η = ±1.  The
corresponding eigenfunctions Smn(cη) are the prolate
spheroidal angular functions of the first kind, of order m and
degree n, and Rmn(c,ξ) are the prolate spheroidal radial
functions of the same kind, order, and degree.  By replacing
c with -ic in Eq. (3), we get the oblate spheroidal
eigenvalues, λmn(-ic), and the corresponding angular and
radial eigenfunctions.

We have the following recurrence relations between the
coefficients λmn in the eigenvalue problem (Flammer 1957):

( ) .0ddd 2kkkmnk2kk =γ+λ−β+α −+ (4)

The coefficients α, β, γ are given by
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Based on these recurrence relations, one can define infinite
continued fractions from which both the eigenvalues, λmn,

and the corresponding coefficients )c(dmn
k , can be

computed by an iterative scheme.  Although the classical
iterative procedure works well in many cases when one has
access to accurate initial estimates for the eigenvalues, it is
difficult to turn it into a reliable algorithm for automatic
machine computation.  Therefore, we use an alternative
procedure that is well adapted to automatic machine
computation, because it requires no initial estimates of the
eigenvalues λ or coefficients d.  Also, it is reliable and
accurate and based on readily available computer
algorithms.  The new procedure is simply based on realizing
that the recurrence relations, mentioned above, can be used
to reformulate the computational task as an algebraic
eigenvalue problem.  The procedure leads to a tridiagonal
matrix from which the eigenvalues (characteristic values)
and the corresponding eigenvectors (coefficients) can be
determined by applying a standard computer library routine
for solving eigenvalue problems.  These routines are readily
available and they can also handle complex valued
problems.  We use LAPACK library routines for solving the
complex eigenvalue problem.  A simplified version of this
method is often used to find starting values for λ that can be
used in the Bouwkamp iterative method.  In the Bouwkamp
method, one typically solves a small eigenvalue problem for
approximate values of the λs only.  Next, one refines these
λs, and then use them in the iterative scheme to determine
the coefficients d.  Recently, a method in which the λs are
completely determined by solving the complex eigenvalue
problem was presented (Qinan et al. 1997), but here also the
iterative scheme was used to determine the coefficients d.
Our new approach fully solves the algebraic eigenvalue
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problem so that we obtain not only the eigenvalues λ, but
also the coefficients d.  The eigenvalue problem involves
the diagonalization of a matrix of infinite dimension.
However, the size of the eigenvalue matrix required in order
to yield accurate results is moderate; hence, allowing for an
efficient and reliable computation of the coefficients for
realistic values of the size parameter c.  We seldom need
matrices larger than (2c+n) × (2c+n).

Preliminary Results

We have implemented the new method and compared it
with published results (Hanish et al. 1970; Van Buren et al.
1975).  However, benchmark values are only available for
purely real or purely imaginary values of c.  Large values of
c are also missing in the literature (c > 40).  The first tests
therefore were limited to purely real and imaginary values
of c for which Hanish et. al. (1970) and Van Buren (1975)
have published extensive tables (0.1 ≤ c ≤ 40.0, m =
0,1,2,3).  The computer program employed for generating
the benchmark tables of radial and angular spheroidal
functions (Van Buren et al. 1970; King et al. 1970) contain
routines that make use of the Bouwkamp method for finding
the eigenvalues and coefficients.  We replaced these parts of
the original routines that compute the eigenvalues, λ, and
the coefficients, d, with our routines using the method
described above.  We found excellent agreement (up to the
22nd decimal point) in most cases.  The original program
and the one modified to use our method takes about the
same amount of computing time, but as mentioned above,
the original program can only handle purely real or
imaginary c’s.

A simple scalar solution to the axisymmetric single
scattering problem in the oblate spheroidal coordinate
system is given by

)i,ic(R),ic(SB),( )1(
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where the Bn’s are determined by the boundary conditions,

and the spheroidal functions ),ic(S )1(
n,0 η  and )i,ic(R )1(

n,0 ξ−

are calculated using the expansion coefficients, d, calculated
with the new method.  As the incident field we can take a
simple plane-wave as expressed in the following plane-wave
expansion
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for a wave traveling along the axis of symmetry.  A simple
boundary condition is the so-called “hard” boundary
condition, which implies that the total field is zero on the
surface of the spheroid.  By equating these expressions for
ξ = ξ0, the surface of the spheroid, we obtain the solutions
shown in Figures 1, 2, 3, and 4.

Figure 1.  This figure shows an example of the
amplitude of a plane wave field, or a plane wave
expansion in oblate spheroidal coordinates.  The field
is traveling in the direction of the minor axis.  This is
the field used as the incident field in the following
figures.  (For a color version of this figure, please see
http://www.arm.gov/docs/documents/technical/conf_98
03/eide-98.pdf.)

Figure 2.  Amplitude of the scattered field in the
vicinity of a oblate spheroidal particle with a real c of
3.0.  The incident field is a plane wave traveling in the
direction of the minor axis (see Figure 1).  We have
used “hard” boundary conditions.  (For a color version
of this figure, please see http://www.arm.gov/docs/
documents/technical/conf_9803/eide-98.pdf.)
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Figure 3.  Amplitude of the scattered field in the
vicinity of a oblate spheroidal particle like in Figure 2.
Now with a real c of 5.0.  (For a color version of this
figure, please see http://www.arm.gov/docs/
documents/technical/conf_9803/eide-98.pdf.)

Figure 4.  Intensity of the total scalar field (incident +
scattered field) in the vicinity of a oblate spheroidal
particle with a real c of 1.0.  The incident field is a
plane wave traveling in the direction of the minor axis
(see Figure 1).  We have used “hard” boundary
conditions like those in the other figures.  (For a color
version of this figure, please see http://www.arm.gov/
docs/documents/technical/conf_9803/eide-98.pdf.)

Future Work

In future work we will compare the results obtained and the
computational resources required to run the VDISORT code
(Schulz et al. 1998b) using Bouwkamp’s method and our
new method.  We will then get results for extreme size
parameters and aspect ratios, and we will examine the
consequences of using a “spherical” particle model in
radiative transfer applications by executing the VDISORT
code with a “spherical” as well as a “non-spherical” particle
model as input.

We also plan to quantify the impact of particle shape on
radiative energy disposition by comparing results obtained
with a “spherical” particle model with those obtained with a
“non-spherical” particle model as input to a scalar radiative
transfer code (e.g., DISORT).  Eventually our goal is to
parameterize the impact of particle shape on atmospheric
warming/cooling rates in such a way that the shape effect
can be incorporated into GCMs.
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