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Introduction

Lidar and IR radiometric particle sizing techniques are
affected by high extinction rates.  Thus, they cannot be used
for ground-based remote sensing of effective particle size in
optically thick clouds or when low liquid water clouds or
precipitating clouds are present.  On the other hand, modern
ground-based millimeter-wavelength radars are sensitive to
cloud particles and can penetrate most clouds, even precipi-
tating clouds.  Millimeter-wavelength systems also experience
non-Rayleigh scattering that can be exploited to form
estimates of particle size distribution characteristics when Although two wavelengths are required to estimate effective
used as part of a multi-wavelength radar (Lhermitte 1987; particle size and peak number concentration, reflectivity data
Matrosov 1993; Sekelsky and McIntosh 1996). collected at three wavelengths can be combined to provide

This publication describes a neural network that combines eters.  To combine this information, multivariate regression
simultaneous reflectivity measurements from three radar analysis was attempted but was numerically unstable because
wavelengths to estimate effective particle size and peak of its high order and was difficult to modify because of its
number concentration in clouds composed of dry ice particles. complexity.  In contrast, the neural network solution described
It presents radar measurements collected during the Maritime here is easily modified and more stable over a wide range of
Continent Thunderstorm Experiment (MCTEX).  During input values.  Neural networks can model any function that
November and December 1995, the University of can be described by classical methods; and they hide the
Massachusetts (UMass) Cloud Profiling Radar System complexity of input-output relationships, freeing the user from
(CPRS) and the National Oceanic and Atmospheric Admini- details of implementation.  Neural networks have been used to
stration (NOAA) Aeronomy Laboratory S-band Profiler were classify cloud type (Lohmeier et al. 1997; Xiao and
deployed next to each other at Garden Point, Melville Island, Chandrasekar 1997) and other quantitative parameters from
Australia.  The UMass radar operates at 3.16 mm (W-band) remotely sensed data.
and 9.06 mm (Ka-band) and uses a single 1-m-diameter

aperture to ensure beam collocation.  The NOAA system
operates at 10.6 cm (S-band) and uses a single 3-m-diameter
antenna.  Attenuation at S-band is negligible over the path
lengths considered, and S-band data are  used   to  resolve
ambiguities  between  attenuation  and non-Rayleigh
scattering.  Initial results for stratiform clouds show a
characteristic decrease in particle diameter with height.  No
trend is observed for the convective case.

Neural Network

more precise estimates over a larger range of particle diam-
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Figure 1.  Neural network used to estimate D  and N .m o

See text for details.

Figure 2.  Dual-wavelength-ratio (DWR) as a function of
effective particle diameter for dry ice.  The model
assumes a Gamma distribution of  spheres.

Figure 1 shows a neural network consisting of four layers: 1) a
layer containing three input nodes, 2) a layer of seven hidden
nodes, 3) a second hidden layer of four nodes, and 4) a layer of
two output nodes.  The input vector, , is

where the dual-wavelength ratio, DWR, is defined by

Z  has units of mm m , l denotes the longer-wavelength radare
6 -3

band and s denotes the shorter-wavelength band.  Note that
Equation (2) assumes volume-mismatch and attenuation
effects have been removed from Z  and Z .e,l e,s

Elements of the input vector, , were chosen for their phys-
ical relationship to the outputs, but are equivalent to inputting
the three radar reflectivities.  Scaled logarithmic values are
used to reduce the dynamic range of values that must be
modeled by the neural network.  The output vector, ,
includes two parameters of a Gamma particle size distribution:

where N(D) = N Dexp(-4.67D/D ) is the Gamma particle sizeo m

distribution with a shape factor of 1.

Training Data

In order to form the neural network, it must be trained with
input vectors, , and corresponding, known output vectors,

.  Our network was implemented using the Stuttgart Neural
Network Simulator version 4.1 (Zell et al. 1995) and trained
with simulated data.  Standard back propagation was used to
train the neural network.

Figure 2 plots a model of DWR versus effective diameter, D .m

The model assumes dry spherical ice particles with a size-
density relationship, D[gcm ]=0.7/D[mm] given by Klassen-3

(1988).  As suggested by Klassen, the range of D is limited so
that 0.005 < D < 0.9 [gcm ].  Backscatter cross-sections used-3

in training data for the neural network were calculated with
the discrete-dipole approximation (DDA) using the DDSCAT
(V5a) software package (Draine and Flatau 1996).  Errors in
reflectivity are negligible for distributions of particles having
effective particle diameters as large as 10 mm.

Results

Figures 3a and 3b show histograms of median particle
diameter for stratiform and convective cloud conditions,
respectively.  The cloud data used to create these figures was
edited to remove consideration of precipitation and the melt-
ing layer thus the first range gate is at approximately 4.2 km
above ground level.
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Figure 3.  Histogram of D  for (a) stratiform and (b) convective clouds.m

The contrast between the vertical distribution of particle Lhermitte, R. M., 1987:  Observations of stratiform rain
size is striking.  Figure 3a shows that above a certain with 94 GHz and S-band Doppler radar.  Technical Report
altitude, D  monotonically decreases with height for AFGL-TR-0268, Air Force Geophysics Laboratory,m

stratiform conditions, while Figure 3b indicates no such Hanscom Air Force Base, Massachusetts.
trend for the convective case.  Measurements presented for
the stratiform case were collected beginning about 2½ hours Lohmeier, S., S. Sekelsky, and R. E. McIntosh, 1997:
after intense convection and show no substantial up-drafts. Classification of cloud particle types using 33 and 95 GHz
To correct for attenuation effects, cloud-top reflectivities
were matched at the different frequencies, taking into
account differences in the index of refraction for ice and
water at the different wavelengths.  S-band reflectivity
values were used as a reference since the S-band signal is
not attenuated.

The convective case occurred within a few minutes of a near
miss by a convective cell, but only weak precipitation ( Rr

< l mmhr ) fell on the radars.  Because features in DWR-1

near cloud-top indicated non-Rayleigh scattering, the cloud-
top matching scheme used to remove attenuation for the
stratiform case could not be applied here.  Instead, a small
correction for attenuation was applied using radar-derived
rain rates.
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