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Introduction

In order to work out some fundamental problems occurring in
radiative transfer in the atmosphere, one needs to have a phys-
ically based model of cloud fields and, more generally, of the
atmosphere, which is able to yield realistic inhomogeneities
over a wide range of scales, e.g., from at least 5000 km down
to 50 cm—as argued in a companion paper (see Lovejoy et al.
1997, this volume).

As the physical foundations can rely neither on a reduced set
of deterministic-like equations (heavily truncated in order to fit
the very limited size of [super-] computers and with a sub-
sequent large number of ad-hoc parameterizations) nor on
ad-hoc stochastic models (e.g., with parameters tuned up in an
ad hoc way), one needs to consider stochastic models respect-
ing the symmetries of the fundamental equations, in particular,
the scale symmetries.

In this respect, we will discuss refinements of the Fractionally
Integrated Flux (FIF) multifractal model, which since
Schertzer and Lovejoy (1997) has been used for modeling
clouds as well as for modeling atmospheric dynamics in the
framework of the “unified scaling model” of the atmosphere
(Schertzer and Lovejoy 1985a, 1985b; Lovejoy and Schertzer
1985, 1986; Lovejoy et al. 1993; Lazarev et al. 1994).

These refinements were built on scaling symmetries by taking
care of other symmetries (e.g., Galilean invariance), as well as
some symmetry-breaking mechanisms (e.g., causality, which
breaks the mirror symmetry along the time axis).  These
symmetries lead to dynamical models over a large range of
scales.  On the other hand, we discuss in a very
inhomogeneous framework how to use mean photon paths to
explore the fundamental issues in atmospheric radiative
transfer of the anomalous atmospheric absorption and
retrievals by remote sensing.

Fundamental Elements of
Scaling Fields

To have a physically based model of turbulent fields, one
needs to consider rather distinct elements as well as their
interplay.  Later, (see section on model limitations, we will
discuss the indispensable need to do so in order to avoid some
misleading confusion between them.  In a rather general
manner, we need to consider:

C the fields themselves such as the velocity (v(x,t)), tempera-
ture (2(x,t)), liquid water content (D(x,t)), radiance field
(I(x, u, t); where the unit vector u corresponds to the
direction of the ray), etc.
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C their increments or fluctuations, e.g., for the velocity field

which (with the fields) correspond to fundamental statistical
observables of the fields.  We did not explicitly indicate any
dependence on the point (x,t) since usually one assumes a
statistical stationarity of the fields (and hence the increments)
corresponding to statistical time and space translation
invariance: their probability distribution does not depend on
(x,t).  In this case, a consequence is that the structure functions
of any order q, i.e., the statistical moment of the increment at
this order:

depends only on the lag () x, ) t).

C the densities of turbulent fluxes, such as the turbulent
energy flux density , the density of the flux of the variance
of the concentration field , etc.  These quantities are
generally hard to observe directly, contrary to the fluctua-
tions, but since they correspond generally to some funda-
mental symmetry of the equations, they possess a further
property of stationarity (than being translation invariant):
they are “conservative” in the sense that they are rather
independent of the scale of observation.

C a (generalized) notion of time-space scale.  The precise def-
inition of the space-time scale  will be dis-
cussed below in the section on FIF models; however, let us
point out that it should be in a general way physically
defined by the (scaling) behavior of the flux densities

in particular, their canonical conservation

i.e., .  More generally 
measures how singular the flux is, i.e., how its moment of
order q diverges at smaller and smaller scales.  Similarly, we
will have some scaling behavior of the structure functions,
e.g.,

Since the fluctuations are equal to a gradient times a scale, we
have in general , and  measures
how singular the gradient is, i.e., how its moment of order q
diverges at smaller and smaller scales.

The common property shared by the scaling moment functions
 and  is that they are linear in the case of homo-

geneity  or of fractal inhomogeneity
(the activity of the fields is concentrated on a fractal set),
whereas they are nonlinear in the case of multifractal inhomo-
geneity (the different levels of activity define embedded
fractals sets of distinct fractal dimension).  However, beyond
this common property, there are some important differences,
and even opposition.  We have already mentioned a few of
them.  Forgetting to distinguish them may lead to confusion
(see later discussion of model limitations).  One may note that
products of conservative fluxes are in general no longer
conservative.

Fractionally Integrated Flux
(FIF) Multifractal Models

In the framework of FIF models, these previously reviewed
elements are clearly defined, as is the interplay between them.
The fluxes are directly obtained from multiplicative cascade
models.  In general, for reasons discussed above, this cascade
is conservative; whereas the fields are obtained by
(space-time) fractional integrations over various powers of
fluxes or products of fluxes.  The order of this fractional
integration is directly related to the expected behavior of the
fluctuations of the corresponding fields.  However, the
fluctuations so obtained are rather more involved than usually
expected on the basis of (mono-) fractal ideas (see below for
discussion of behavior of the increments).

Before examining these different questions in some detail, let
us highlight some recent improvements of this general
scheme.  The first was to consider an isotropy in space and
time, within the general framework of Generalized Scale
Invariance (GSI):  this corresponds to introducing differentia-
tion operators with distinct (fractional) orders for temporal
and spatial differentiation.  However, in addition, the “arrow
of time” requires the breaking of the mirror symmetry along
the temporal axis, i.e., because of causal antecedence.
Overall, we obtain a new and dynamical meaning of the
fractional integration of fluxes: the scaling function involved
in the corresponding convolution is no longer isotropic, mirror
symmetric (i.e., acausal), and static, but is rather a Green’s
function (or propagator) of a dynamical solution of a
time-space (fractional) differential equation.

Let us now consider some details in order to better perceive
the fundamental questions.
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Time-Space Framework and
Generalized Scale Invariance

In relativity, the space-time scale notion is usually related to
invariance of a characteristic velocity c therefore to an invari-
ance of the (infinitesimal) metric:

On the contrary, within a turbulent medium, we have to con-
serve energy flux density, which, merely on dimensional
grounds, rather leads us to consider quite a different notion of
scale (which is no longer a metric):

The general framework of continuous cascades leads us to
define a flux at any ratio of scale 8 (with respect to some outer
space-time scale ) by its generator, i.e.:

the scale notion being defined in the GSI (Schertzer and
Lovejoy 1985a, 1985b; Lovejoy and Schertzer 1985, 1986) by

where  is a generalized contraction operator, which as the

usual (isotropic) contraction  forms a (multiplicative)

one parameter group .  It therefore admits an
infinitesimal generator G, which in the linear case is a matrix

 and is the identity  for the usual

(isotropic) contraction.

Dynamical Generation of Fluxes

The generator of a continuous cascade satisfies a (dynamical)
equation:

where  the sub-generator is a white noise (a Levy white
noise for universal multifractals), g is a space-time scaling
propagator

and precisely for Levy generator (of Lévy index " on a
D dimensional space) in order to satisfy the scaling (Equation
[3]), it turns out that (Schertzer and Lovejoy 1997, Schertzer
et al. 1997)

The choice of the appropriate fluxes for passive clouds is dis-
cussed in Schmitt et al. (1996, 1997) and Schertzer et al.
(1997).

Dynamical Generation of Fields by
Fractional Integration of Fluxes

The concentration field itself satisfies a similar equation, but
with a different (fractional) differential operator G-1

whereas the usual isotropic and static propagator corresponds
to

the breaking of temporal symmetry corresponds to the fact that

More details are discussed by Marsan et al. (1996, 1997). One
may furthermore note that there are structural relationships
between FIF models and dynamical models directly derived
from Navier-Stokes equations (Chigirinskaya et al. 1996,
1997), which strengthen the physical basis of FIF.

Behavior of the Increments

It is interesting to note that the increments of a fractionally
integrated flux have the rather distinct behavior of a mono-
fractal field, although they yield the expected trivial scaling.
Indeed, they have rather distinct behaviors at quite larger or
smaller scales with respect to the spatial lag.  Due to the
linearity of the convolution, the increment is the convolution
of the same flux, but with the increment of the corresponding
Green’s function, i.e.
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At larger scales due to a dipole effect (Schertzer et al. 1989),
they correspond to a fractional integration, but with the
gradient of the propagator

Hence, the order of integration for the increment is decreased
by one compared with the field itself, while at small scales, we
have a unipole effect, i.e., only the nearest point of the lag
contributes

This small-scale behavior being similar to the field itself justi-
fies the choice of calculating the order of fractional integration
of the flux on the basis  of the expected scaling behavior of the
increments (as expected e.g., with the help of some
dimensional reasoning).

Galilean Invariance

Classical mechanics require that the construction of the FIF
model be Galilean.  The Galilean transform from one frame 
to another , moving with the speed u in respect to  (and
with parallel axis), corresponds to the following (linear)
transform 

The generator U of this transform is

This induces (Schertzer et al. 1997) a corresponding Galilean
transform of the GSI generalized contraction operator 

since the generator  of  in general does not commute
with  (with the notable exception of space-time isotropy

and, indeed, a non-diagonal  results from a diagonal  (the
latter corresponding to self-affine structure functions). How-
ever, this Galilean transform gives us a Galilean notion of ratio
of scales with the help of Equation (9); therefore, space-time
FIF models are actually Galilean invariant.

Some Limitations of Other
Models

We emphasized the need to distinguish between different
fundamental elements of the scaling model.  Indeed, ignoring
this may lead to some serious difficulties which we illustrate
by a few examples.  The first example concerns the overly
general discussion of the question of the statistical stationarity
of the cascade, specifically since we pointed out two rather
different meanings of stationarity, related to two distinct
observables, i.e., fluxes and fluctuations.

This distinction also brings into question the relevance of any
model which tries to build up directly a field, without dis-
tinguishing fluctuations and fluxes:  one is compelled to try to
satisfy distinct and often contradictory constraints.  For
instance, in the case of the so-called “bounded cascade”
models (Bell 1987; Cahalan 1994 and references therein), one
tries to use a rather standard model of flux but for the
concentration field itself, one is compelled to introduce an
ad-hoc smoothing operation (e.g., to obtain a smooth enough
spectrum).  Furthermore, the scaling notions themselves even
need to be revised so that the model may be claimed to be
scaling or multifractal at all.  Not only is the physics soon lost
(we already underlined the basic role of fluxes), but so is the
logical coherence of cascades.  Furthermore, there is no need
to proceed this way.

In contrast to the space-time FIF models, models involving the
rather ad-hoc addition of a temporal dimension to a spatial
model of turbulence also face severe limitations.  This is the
case for models based on a Markovianization of Lagrangian
dynamics (Over and Gupta 1996, Lima and Vilela Mendes
1996).  Indeed in this case, one hypothesizes a very special
property within the so-called Lagrangian framework, which is
in fact the Galilean framework moving with the average speed
of the phenomena (e.g., rain field).  We have already argued
from the theoretical necessity to respect the Galilean
invariance.  Let us mention that the interplay between
Lagrangian and Eulerian statistics can be empirically assessed
(Seuront et al. 1997).

Radiative Transfer and FIF
Models

The radiative transfer equation (  being the (constant)
extinction coefficient and  being the phase function
between the directions and 
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generates an infinite hierarchy of directional moments of the
radiance, i.e., averages over the radiance field  of
higher and higher tensor powers  of the unit
vector u defining the direction of the ray and we have the following (orthogonal) decomposition of the

which satisfy the following hierarchy of equations

we will see that  has rather simple expression for n =
0,1 and the corresponding directional moments (of order n+1)
are of fundamental importance.  Indeed, the classical flux of
radiance is the first order directional moment

and it corresponds, loosely speaking, to the mean path of
photons: the larger its amplitude, the more focused is the beam
along this vector.  On the contrary, the symmetric (second
order) tensor 

rather measures its dispersion, in particular by its trace

which corresponds to the (classical) total radiance

The higher order directional moments are obtained by simple
contraction or double contraction of the first two directional
moments, as soon as one considers an “n-fluxes approxima-
tion” (here n=2d with d= the dimension of space; which
corresponds to “Discrete Angle” phase functions (Lovejoy et
al. 1990), i.e., considering only rays along 2d orthogonal
directions .  In this (simple) case, Kij = 0
for , and the relation of the present notation to that of

Lovejoy et al.  (1990) is Fi = Ii-, Kii = Ii + for the ith
component.  Indeed, the orthogonality condition, implies (by
[over-] simplifying the integrations over directions) that

radiance

whereas, in general cases, one must consider a rather involved
decomposition in spherical harmonics.  In the following, we
will often consider the limited expansion of the radiance field
corresponding to Equation (31), without requiring a
discretization of angles.  However, we will not discuss the
realizability conditions, i.e., conditions ensuring that the
corresponding radiance remains positive.

Fluctuations of the Radiance
Field and Photon Mean Path
Integration

Let us consider the fluctuations of the radiance field
, with merely the assumption of perfect scattering,

i.e., without any absorption

Without any other assumption than the usual one
corresponding to considering that the phase function  
depends only on the angle of the two directions  and
more precisely on , one obtains

and may note that the simple case of isotropic scattering yields
.  Therefore Equation (25) for n=1,2 corresponds to
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Figure 1.  It illustrates a ‘mean photon path’ in a
perfectly scattering atmosphere.  It corresponds to an
elementary radiance flux tube between the top and the
bottom of the atmosphere.  The cross-section of the tube
increases as soon as the concentration of the scatters
increases and the intensity of the flux vector decreases.

(37)

(38)

(39)

(40)

Due to the divergence free condition on the flux, these
equations can be integrated along elementary flux tubes (see
Figure 1 for illustration) with elementary section  and
due to Equation (34)

As discussed earlier, this rather corresponds to integration
along mean photon paths: the flux tube becoming larger as
soon as the scattering increases.  More precisely, we are con-
sidering a volume of the atmosphere delimited by a top and where  is the increment of the optical depth along
bottom surface that are both orthogonal to the flux F, with a
given top insolation intensity  along the downward vertical
(direction ) and a bottom albedo , then the variation of
the radiance along any flux tube with elementary section

 is (due to Equations [31] and [36]) given by

Noting that the flux tube is also an envelope tube for ,
we then obtain that

the flux tube axis , i.e., the following curvilinear integral

With the help of the top and bottom boundary conditions, it
yields the elementary flux along the tube

which at the top of the atmosphere  is a quantity of
fundamental interest for satellite remote sensing, since it
corresponds to the difference between the top insolation and
the measured radiance.

At first glance, the results obtained are rather the straight-
forward extensions of those established for the (academic)
one-dimensional or plane parallel atmospheres  (Naud et al.
1996a, 1996b) and therefore rather support the corresponding
general claim of similarity between (fractional) integration and
radiative transfer in a multifractal media.  However, the new
element of complexity is that instead of being straight as in the
academic examples, the mean photon paths  should be
rather convoluted, with important fluctuation of their flux tube
cross-sections due to inhomogeneities of the scatters.  One has
therefore to consider mono-dimensional integration along
multifractal paths.  Nevertheless, it does not change the
general phenomenology, i.e., the lowest singularities are
smoothed out, whereas the highest are missing due to
insufficient sampling.  The two corresponding critical
singularities bound a “window of direct inversion,” within
which the singularities of the multifractal field can be directly
retrieved from the radiance field fluctuations. However, the
precise definition of these critical singularities will depend on
the multifractal properties of the mean photon paths.

On the other hand, the relative simplicity of the general results
may explain the apparent robustness of the “independent pixel
approximation” (IPA) in many lengthy numerical simulations
on generally optically thin clouds.  Indeed, most of these
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Figure 2.  Illustration of a typical  elementary
radiance flux tube in a slightly absorbing, but
strongly scattering atmosphere.  Before reaching
the bottom of the atmosphere, it reaches a thin
boundary layer, where the dissipation becomes
strong, thanks to extreme scattering.  The radiance
is no longer conservative, but decays exponentially
fast within this layer.

(44)
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(46)

simulations suffered from important numerical limitations and
tended to lead to flux tubes rather close to vertical columns.
However, note that as expected for thick clouds, the IPA does
indeed lead to an anomalous scaling exponent for the albedo
and transmittance with mean optical thickness; numerically,
Davis et al.  (1992) already found important errors in clouds
with optical thickness .

Multifractal Singular
Perturbations and the
Anomalous Absorption

We now consider the problem of anomalous absorption in an
apparently nearly perfect scattering case.  The general idea to
explain its appearance is that the length of the photon path
increases so much that the result is an effective absorption
coefficient by water vapor, which is much larger than the bare
one obtained without taking into account the scattering by
water liquid.  In fact, we find that the case of perfect scattering
(see earlier discussion of fluctutuations of the radiance field)
corresponds to the rather naive external solution of a singular
perturbation problem, whereas the quite different internal
solution give us quite more insights in estimating the effect of
the thin but primarily important boundary layers where most
of the increase of the effective absorption occurs.

In weakly absorbing but strongly scattering atmospheres, the
small parameter in the problem is

where the v subscript refers to the vapor phase, which is con-
sidered to be purely absorbing, whereas the liquid phase is
considered to be purely scattering.  Therefore the equations
corresponding to Equation (23) are

The external solution is obtained by fully ignoring the vapor
phase, i.e., the solution discussed earlier, by considering

.  The internal solution, denoted by a tilde, is obtained
by considering  as a singular limit in boundary layers,
where within their thin thickness *, important variations of the
divergence occur (see Figure 2 for an illustration).  Indeed, by
nondimensionalizing the distances by the thickness * of the
boundary layer, and by correctly nondimensionalizing the  flux

with a scale of intensity a times smaller than the intensity scale
for :

when the effective optical depth  is of order one
(which requires  as expected and which defines the
order of the boundary layer thickness), we obtain the follow-
ing system:

As the divergence of the flux  is now of order one, as is that
of  the tensor  , this  leads  to the appearance  of  an effective
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absorption as important as the scattering!  Both decay Chigirinskaya, Y., D. Schertzer, and S. Lovejoy, 1997:
exponentially fast inside of the boundary layer: loosely Scaling gyroscope cascades:  Universal multifractal features
speaking, the photon paths end at the bottom of the boundary
layer.  In any case, the external bottom boundary condition (as
with albedo) is no longer relevant, but rather the internal
boundary layer condition is.  Independently of the details of the
latter, the asymptotic matching between the internal and
external solutions preserves the fact that the amplitude of  is
a times smaller than .  This corresponds to an apparent
albedo 

Applying Equation (40) with this albedo to the section of
photon path between the top of the atmosphere and the top of
the boundary layer  yields the following estimate of the
downward flux:

which shows two competing effects of the boundary layer: the
shortening of the effective mean photon path and the increase
of the effective albedo.

Conclusions

After having clarified some fundamental issues of multifractal
cloud modeling, we derived some new theoretical results on
perfect scattering as well as anomalous absorption, which are
valid in any dimension and are not qualitative only, as in
previous work.
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