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Introduction

Both single-column models (SCMs) and cloud ensemble
models (CEMs) are often forced with observed, objectively
analyzed fields (Randall et al. 1996). Consider an arbitrary
scalar variable, ¢, satisfying a flux-form conservation
equation:

9 0
a_?: ~Ve(VQ) —a—p(wq) +P D

Here P represents the “physics’ that affects q. The
corresponding continuity equation is

0
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By using Equation 2, we can rewrite Equation 1 in the
“advective” form:

oq _ aq
—=-VeVg-w—+P.
ot a wap )

A one-dimensional (1D) model cannot predict the large-scale
divergence, so if Equation 2 is to be used to obtain the vertical
velocity, then we must prescribe VeV. Similarly, a 1D model
cannot determine -Ve(V() or -VeV(, so we need to prescribe
some information about the horizontal advection of g.

Some investigators have experimented with an artificia
“relaxation” term added to the right-hand side of Equation 3,
i.e,
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where g, is the observed value of g, and t is a specified
“relaxation time scale,” which is specified to be on the order
of aday to haf aday. A problem with the relaxation term is
that it does not represent any real physical process.

Consider three different methods to include the advection
termsin an SCM or CEM:

Revealed Forcing

One possibility is smply to compute directly from the obser-
vations, and then prescribe these values in the 1D model,
integrating Equation 3. With this simple approach, errors in
the predicted vertical distribution of q have no effect on the
advective tendency of g.

Vertical Advective Forcing

A simple modification of the above approach consists of
prescribing and w from the observations, and using the
predicted profile of g, together with the prescribed w, to

evauate fw% as the model runs.

Vertical Flux Forcing

Many large-scale models, especialy finite-difference models,
use the flux form, Equation 1, to predict q. It is possible to
retain the flux form for vertical advection in a 1D moddl, as
follows. Splitting the horizontal advection term of Equation 1
into two pieces gives

aq 0
= Vevg-qVeV ———(w0) +P.
= q-9 alo(wq) (5)

We can prescribe VeVq and VeV from observations. By
integrating the continuity equation, Equation 2, we can obtain
w(p)from VeV. Then Equation 5 can be used to predict g.

Suppose that g represents the mixing ratio of water vapor.
The total lateral moisture flux convergence is then given by
-VeVg-qVeV. The first term, -VeV(q, is prescribed. The
second depends on both the prescribed wind convergence,
-VeV ,and the simulated vapor mixing ratio, g. From
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9q
1 ~ —qVeV
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it is apparent that q will tend to grow exponentialy (and
catastrophicaly) in a layer that has VeV<0, and to decay
exponentially in alayer that has VeV>0.

Relaxation Forcing

Using Gausss Theorem, we can rewrite the horizontal flux
divergence term of Equation 1 as

Ve (VQ) :%[ - (VinAIinqi n) + (VoutAloutqout)]' (7)

where the first term represents the inflow, and the second
represents the outflow. Next, we modify Equation 7 by adding
and subtracting termsinvolving q:

Ve(Va) = %{ [ VinAIin(qin7Q) ] +[ VoutAlout(qouFQ) ]}

+%[VinA'in]+[V°“tA|°“t]

(8)

We recognize the quantity on the second line of the right-hand
side of Equation 8 as gVeV, so that Equation 8 is equivalent
to

V'Vq :%{ - [VinAIin(qin 7Q)] + [VoutAlout(qout 7Q)]} (9)

Now suppose that

00y = f(0,~0) (10)

With the use of Equation 10, we can re-write Equation 9 as

(Qin7Q)
Vevg=—— (11)
Ta
where we define
(VinAIin) M f(Vou AIou )
i = t t (12)
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Finally, we substitute Equation 11 into Equation 3 to obtain

9a_ @9 a9,
ot T

13
— oy (13)
The meaning of Equation 11 and Equation 13 is that
horizontal advection acts like a relaxation of q towards g,
with relaxation time scale T, .

When we directly insert the observed value of -VeV into
Equation 3, errors in the prescribed horizontal advective
tendency and/or errors in the SCM physics can drive the
simulated sounding away from the evolving observed
sounding; the model “getslost.” Because the inserted data do
not contain information about the actual value of ¢, the model
is not able to find its way back home.

Compare Equation 13 with Equation 4. The relaxation term
of Equation 4 is added artificially, in addition to the horizontal
advection term. The relaxation time scale in Equation 4 hasto
be arbitrarily specified. The relaxation in Equation 4 is
towards 0, the observed value of g in the region. The
relaxation term of Equation 4 cannot be compared with
observations because it does not represent a real physica
process. In contrast, the relaxation term of Equation 13 is
identically the horizontal advection term. The relaxation
time scale t_,, can be computed directly from the data and
does not have to be specified arbitrarily. The relaxation in
Equation 13 is towards ¢ ,, the observed properties of the air
entering the region. The relaxation term of Equation 13 can
be compared with the objectively analyzed value of -VeVq.

Before we can actualy use Equation 13, it is necessary to
diagnose g, and t,, from the objective analysis scheme.
With some simplifying assumptions we can write

Tav = g4 14
=y (14)

and Equation 11 yields
G, = Q*‘CajVV°Vq (15)

All of the quantities on the right-hand sides of Equation 14
and Equation 15 are observable.
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Figure 1. Time-height sequence of temperature for the April 1996 IOP: (top left) observed; (top right) simulated
using revealed forcing; (center left) simulated using vertical flux forcing; (center right) simulated using relaxation
forcing. Also, time-height sequence of temperature tendency due to horizontal advection for: (bottom left)
observed; (bottom right) simulated using relaxation forcing.
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Figure 2. Asin Figure 1, but for water vapor mixing ratio.
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Figure 3. Time sequence of simulated and observed precipitation rate for the April 1996 IOP.
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