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Use of a Nonlinear Dynamic Limit-Cycle Model to Identify
Perturbations Embedded in Surface Energy Flux Data

M.-D. Cheng and W. F. Lawkins
Oak Ridge National Laboratory
Environmental Sciences Division

Oak Ridge, Tennessee

Introduction Description of Data

With the advent of real-time in-situ measurement capabilities, Currently, ten EBBR stations at Cloud and Radiation Testbed
the dynamics (evolution of the system states) of  natural (e.g., (CART) sites are producing continuous measurements for the
atmosphere) or manmade (e.g., industrial engineering) energy flux calculation.  In this meeting, we present the
processes can be probed with an unprecedented temporal and analysis results using the data produced by the EBBR station
spatial resolution.  Extremely large volumes of ambient data at the Central Facility (CF).  The sample resolution of the heat
describing atmospheric states (meteorology, radiation, fluxes was 30 minutes.  Thus, there were 48 data points per
clouds/aerosols, and water) and evolution of the states can be day and 35,040 points from January 1, 1994, to December 31,
produced.  Generally, the data describing the evolution of 1995.  It is well known that the surface heat flux calculated by
atmospheric states are time series of measurement variables the Bowen Ratio (BR) technique is unreasonable when the BR
that may be contaminated with noise.  Many complex is near -1.  Wesely et al. (1995) suggest that heat fluxes whose
phenomena, including atmospheric processes, are nonlinear corresponding BR values were in the range of [-0.75, -1.5]
and sensitive to perturbations.  Development and application were unreliable.  BR was calculated as the ratio of sensible to
of methods to analyze large volumes of nonlinear time series latent heat fluxes.  We used all the data points (including bad
data have been limited.  Analytical time series models BRs) in the analysis such that these data points could provide
developed to investigate nonlinear atmospheric processes a benchmark to test our perturbation analysis technique.
based on the chaos theory (e.g., Tsonis et al. 1994; Wang
1995) are recent but promising.  However, most of the
techniques are sensitive to noise in the data and to the size of
the data set.  

To identify noisy segments in the time series, we applied a
technique based on the theory of nonlinear dynamics time
series (NDTS).  A segment consists of a single datum (i.e., a
single outlier or a spike) or a block of contiguous data points.
We focused on the surface energy transfer processes using
data produced by the Energy Balance Bowen Ratio (EBBR)
stations of the U.S. Department of Energy (DOE)
Atmospheric Radiation Measurement (ARM) Program from
January 1, 1994, to December 31, 1995.  This analytical
model can, however, be applied to data other than those of
EBBR.  The choice of EBBR data was based on the
convenience and possibility of verifying our results.

Objectives

The objective of this research was to develop a physics-based
analytical technique for identifying perturbations in an
atmospheric time series data.

Brief Theory for Process
Modeling and Perturbation
Analysis

To use the perturbation analysis technique developed at the
Oak Ridge National Laboratory to identify anomalous data in
a time series, one has to model the underlying process using
the observable time series data.  The evolution of the process
involving surface-atmosphere energy exchange was modeled
by constructing a limit-cycle attractor.  Perturbation can exist
when 1) an anomaly occurs in the underlying process because
of external forcings, and/or 2) measurement error
contaminates the observable values.  We adopted a theory
based on Broomhead and King (1986) and refined by Lawkins
et al. (1996) to identify anomalous observations.  Once the
attractor is built, anomalous energy fluxes can be identified by
examining a trajectory projected into the state space
containing the attractor.  A trajectory is a mathematical
description of the time-dependent evolution of the surface
radiative energy transfer processes.  Most of the time the
trajectory is expected to reside on the attractor.  If occasionally
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the trajectory leaves that attractor and moves about in an associated with the frequencies f , j = 1, ....., m.  Recall the
extended region of phase space before falling back to the ordering of singular values.  If  is sufficiently small, then
attractor, that trajectory segment will be called  a perturbation the projection
or change block.  A block can consist of a single datum or
several data points contiguous in time.  Such a change block is
significant and may represent an anomaly in the atmospheric
data.  Natural variability of atmospheric processes is one
cause of anomaly in the observations.  Measurement noise can where  is the linear subspace of  spanned by the first m
also cause the trajectory to fly off the attractor, resulting in principal components will result in eliminating small scale,
anomalies in the observations.  In theory, either type of noisy detail in the highest order coordinates.  The resulting
anomaly would be identified by our analytical technique. attractor is then defined by the ordered triple of parameters (n,
Suppose a correlation matrix M is defined as k, m), where m is the number of principal components

where the superscript T is the transpose operation.  If we values (n, k, m), we can then define a projection:
denote the eigenvalues (or squares of the singular values) and
principal modes of M in pairs by [(F , N )] where j is from 1j j

2

to n and the singular values are in descending order, and we
define the n by n matrix R as R = ( , , ..., ) so that the where
principal mode R  is the j-th column of R, thenj

is an orthonormal transformation  that trans- eigenvectors.  We assume that data produced by a natural
forms  to , I = 1, N.  In general, we radiative transfer process in the atmosphere are generally
expect the j-th mode to have approximately j/2 waves over the concentrated in a highly dense region B for a small value of
time span of a point y , which is the window time scale t  as m2 - m1 + 1.  The region B is defined as B = P  (1 ),i w

defined above.  Consequently, the j-th coordinate in I=1,N.  Thus, B is the projection into the (m2 - m1 + 1)-
corresponds approximately to information in the time series dimensional subspace L of the trajectory 1 in .  In other
resolved by the frequency words, an anomaly in the time series will produce a trajectory

where f  is the windows frequency.  The singular values arew

then estimates of the second moments of each coordinate value
in the set A  and determine the length scales in the phase1

space E   for A .1 1
n

Our experience indicated that candidate values for the then the trajectory segment  is not an anomaly and the time
reconstruction parameters (n, k) can be based on the singular segment corresponding to  is a normal data block.  In turn,
values .  To resolve information in the time series, we want define , I is from  that separates
the lowest order of the principal component frequencies f , j  and  to be the jj

=1, ..., m, where m # n, which are considered to be most
important.  Alternatively, we can choose the largest singular
values of  m to  resolve the  state-space range  of length  scales

j

retained in the model.

Using the constructed attractor we could identify any trajec-
tory segments that had traveled off-course for a certain period
of time because of a data anomaly.  Given the parameter

and L[R ] is the linear subspace of  spanned by thej

1 i
m1,m2

segment in L{R } that moves outside of the region B.  Letj j=m1
m2 

 where  is the length in time steps
of .  Let  be a characteristic time scale of the process,
describing a minimum time frame for discriminating a normal
from abnormal event.  If the following conditions are met,

th
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Figure 1.  Plot of sensible heat flux data obtained
April 1-30, 1996.

anomaly segment.  The length in time steps of  is limitations), we could confirm that most of the darker colors
.  This definition were the points whose BR values were in the range of [-1.5, -

allows a trajectory segment to pass through the region B so 0.75].  There were points whose BR values were not in that
long as the time it takes is less than the time scale .  The range (i.e., the bad data points) but which were caught in the
time series segment  is by definition an anomalous segment time segments and color-coded red.  This result is a limitation
with respect to the time  scale .  It is important to remember of the current NDTS identification technique, which is, e.g.,
that the choice of  is application-specific and would have those embedded in a bad segment.  We will present more
significant influence on the results of the perturbation analysis. results in the poster.

Results and Discussion Conclusions

The analysis used a time scale of  = 6 hours to define data The NDTS methodology developed at the Oak Ridge National
anomalies (i.e., perturbations).  This time scale was fine Laboratory was employed to identify perturbations in a large
enough to allow us to resolve data anomalies that might have data set of surface heat flux obtained by the ARM Program.
resulted from diurnal variations.  We investigated the use of Contaminated data points produced by the EBBR stations
other time scales ranging from 9 to 72 hours and found that were identified by the analysis technique and confirmed  by
the 6-hour time scale was the probe that provided the most the  BRs.  These data points showed anomalous behavior in
details.  A time scale finer than 6 hours did not provide any the phase space into which the trajectory was projected, which
further details in perturbation analysis, indicating a saturation we used to our advantage to identify them.
of information transmission beyond 6 hours.  If a trajectory
segment remained longer than 6 hours in the attractor, the data
points on this segment would not be identified as anomalous.
Figure 1 is a plot for sensible heat flux data from the April 1-
30, 1996, segment.  The darker color points were those
identified as anomalous, and the lighter ones were normal.
Using the BRs calculated for this time section (not  included
in  this  extended   abstract   because  of page
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