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Single Column Variational Assimilation Experiments with
Atmospheric Radiation Measurement Data

J.-F. Louis and M. ðivkoviƒ
Atmospheric and Environmental Research, Inc.

Cambridge, Massachusetts

In this paper we present results of variational data assimilation One can symbolically write the modified forecast model equa-
experiments using Atmospheric Radiation Measurement tions representing the step from time t  to t  as
(ARM) observations over the Southern Great Plains Cloud
and Radiation Testbed (CART) Site. Large scale forcing for
the single column ALFA model (AER Local Forecast and
Assimilation model) is provided by data from the Mesoscale where A  is the nonlinear model operator acting upon the gen-
Analysis and Prediction System (MAPS), and we are currently eralized variable R . In our experiments, we define the ad-
assimilating data from radiosondes, surface observations, justment term <  to be a smooth function of time and height by
Bowen ratio measurements, and broad band radiometers. The representing it as a combination of basis functions
experiments were designed to explore two issues relevant to
successful assimilation of the ARM observations:
1) definition of the adjustment terms required for data assim-
ilation, and 2) representativeness of the observations from
different CART facilities on the scale of the entire CART site.
More detailed results related to the second issue are presented
in the second paper by the same authors (see ðivkoviƒ and
Louis 1997). The results presented here focus on the first of where the functions Z  are Gaussian curves with maxima at
these issues—defining the adjustment terms and on the heights that correspond to standard pressure levels and )t is
convergence characteristics of the minimization algorithm the time step. The 8 coefficients are the control variables for
used in the variational data assimilation. the minimization of the objective function.

Variational Method

Variational data assimilation is based on minimization of an
objective function that is constructed as a weighted sum of all
the square differences between observations and model com-
putations over an assimilation window. The analysis is ob-
tained by modifying the model simulation to minimize this
objective function. We could simply modify the initial state for
the simulation over a 24-hr assimilation window, and we have
experimented with this approach. However, it strongly
constrains the analysis to the model and implies that the model
errors are much smaller than the initial state errors. This
assumption is probably not correct, and we have relaxed these
constraints by using adjustment terms as control variables.
The adjustment terms are added to the model tendencies and
are modified until they minimize the objective function. The
final analysis is then only weakly constrained by the model.
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i

i-1

i

k

A necessary requirement for a practical variational data
assimilation is fast convergence of the minimization algor-
ithm. The convergence rate of the minimization algorithm is
related to the condition number of the Hessian matrix of the
problem (Luenberger 1984). Problems with an ill-conditioned
Hessian matrix usually have large condition numbers (the
ratio between its maximum and minimum eigenvalue). This
results in a low convergence rate since the isopleths are very
distorted and the calculated descent direction may be almost
orthogonal to the optimal direction. One way to speed up the
algorithm convergence in such cases is preconditioning by a
diagonal matrix based on diagonal elements of an estimated
Hessian (e.g., Yang et al. 1996; Nash 1985; ðupanski 1993).

The minimization algorithm (a version of the conjugate gradi-
ent method) goes through a number of iterations for each
24-hour period. At the end of each iteration, a new set
of  adjustment  coefficients  becomes  available,   and   a   new



Session Papers

190

simulation is produced. With each iteration the simulation Figure 2 illustrates results for five consecutive analyses for the
more closely approaches the observations. The diagrams in central observational facility (we have generated analyses for
Figure 1 illustrate this process for six consecutive iterations. another four sites as well [see ðivkoviƒ and Louis 1997]). The
Adjustment coefficients are optimized when the minimum of thin solid line is the short-wave surface flux observed by the
the objective function is reached. Usually, it takes fewer than broad-band radiometer (BSRN data). The lighter dotted line
20 iterations to find the minimum of the objective function. represents the first guess, i.e., the model solution with

Data

We started analyzing data from the CART site soon after they
became operationally available. In our analysis we used
sounding data from four boundary facilities and the central
site. Also, we used energy balance Bowen ratio (EBBR)
observations at ten facilities, surface meteorological observa-
tion system (SMOS) observations at five facilities, and
Baseline Surface Radiation Network (BSRN) observations at
the central facility. In this paper, we present results for the
central facility. The data processing is detailed in ðivkoviƒ and
Louis (1997) in this volume.

Our analyses were limited to the intensive observation period
(IOP) days when complete MAPS data (Mesoscale Analysis
and Prediction System of the NOAA Forecast System
Laboratory) were available. The MAPS data are needed to
calculate horizontal advection terms for the ALFA model.
Unfortunately, many of the MAPS data sets were incomplete
over the 24-hour assimilation window periods that we
considered in our applications, and they were entirely missing
after 1994. This limited the number of days of single column
model (SCM) IOPs when we could perform the analyses.
Among the 1994 IOPs, only 15 days of complete MAPS data
were available:  4 days in April, 3 days in July, and 8 days in
October.

Experiments

We have performed several types of optimization experiments.
In the set of experiments described here, we started from
initial states interpolated from the MAPS data at 00Z for each
day and used soil parameters (heat capacity, albedo, roughness
length, etc.), which are representative of the type of terrain in
the CART site. The experiments showed that the variational
method works as expected with generally fast convergence of
the minimization procedure. The resulting analysis follows the
data fairly well. However, the initial state provided by
interpolated MAPS data is clearly not accurate enough,
especially near the surface, and we found indications that our
soil parameters were not entirely appropriate.

adjustment terms set to zero, at the start of the minimization.
The dark dotted line represents the analyses, i.e., with the final
adjustment terms.

The temperature time series during these five days reflect the
synoptic situation with a cold front passing on 11/9, followed
by three days of relatively clear skies, and finally a warm front
passage (overcast sky) on 11/13. The analysis is noticeably
poorer on the last day. This points to a deficiency in our cloud
parameterization which cannot be rectified by the adjustment
terms.

However, the analysis deficiency may not be related only to
the cloud scheme since the analysis is fairly good in another
cloudy case, on 11/9. It is likely that the model parameters
describing the soil characteristics are also not quite correct. In
the second set of experiments we then performed simultane-
ous optimization of the adjustment coefficients and the soil
parameters. This showed that the definition of the parameters
could be refined by this method, but that a longer time series
would be necessary.

Finally, the third set of experiments consisted of optimizing
the adjustment terms as we did in the first set, but with the ini-
tial state for each day's assimilation taken at the end of the pre-
vious day's analysis. This showed that cycling the data
assimilation in this way can indeed provide better initial con-
ditions. Figure 3 illustrates this for surface temperature at the
central observational facility. Again, the thin solid line (with
the shading) represents observations, in this case surface
temperature as provided by the SMOS data. The dark dotted
line represents the analyses from the first set of experiments
(denoted as “opt6”). The lighter dotted line represents the
analyses obtained with the initial state for each day’s
assimilation taken at the end of the previous day's analysis
(denoted as “opt8”). Clearly, the analyses for the first day
(11/9) are identical. The following days show an
improvement, particularly during the daylight. However, the
most noticeable improvement is the last day, 11/13, when a
warm front passage was characterized by an overcast sky
condition.
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Figure 1.  Comparison of 24-hr surface temperature forecast with observations during the first six iterations
of the minimization algorithm.
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Figure 2.  Time series of five consecutive short-wave
flux analyses based on 24-hr data assimilation
window started from independent initial states.

Figure 3.  Time series of five end of the previous
day’s analysis.
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