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Introduction

The remote sensing of water vapor profiles by a single
instrument during all weather conditions remains an elusive
goal.  The best observations of vapor profiles are currently
provided by Raman lidar, which measures mixing ratio with a
vertical resolution of 75 m and a temporal resolution of 1 min The measurements from which water vapor mixing profiles
up to a range of about 9 km at night.  However, the Raman are derived consist of water vapor mixing ratio profiles from
lidar is limited during daytime conditions and, like most Raman lidar, surface temperature, pressure and humidity from
optical and infrared instruments, does not penetrate
most liquid-bearing clouds.  At the present time, the most
promising techniques for obtaining nearly continuous
profiles of water vapor combines observations from
several remote and in situ sensors. humidity.  Cloud base height, derived from a Raman or

At the Atmospheric Radiation Measurement (ARM)
program’s Cloud and Radiation Testbed (CART) central
facility in Lamont, Oklahoma, several remote sensors are
currently operated continuously.  These instruments include
a dual-channel microwave water vapor radiometer
(WVR), a Fourier Transform Infrared Radiometer, several
ceilometers, and Radio Acoustic Sounding Systems (RASS) at
915 and 50 MHz.  Recently, Han and Westwater (1995)
developed and applied a technique to WVR, RASS, and
ceilometer data that achieved accurate results in cloudy
conditions.  This technique is being used operationally
by ARM (Turner et al. 1997) to blend some of the ARM
remote sensor data.  Using Kalman filtering (KF), this
mathematical technique can be extended to incorporate
soundings from Raman lidar as well.  During clear nighttime
conditions, the soundings are little changed from those of the
Raman; however, during cloudy and daytime conditions, the
impact of the remaining sounders is substantial.  In this
investigation, we derive water vapor profiles by integrating
data from a Raman lidar, WVR, RASS, and surface
in situ instruments.  The data collected during the FIRE II
experiment, conducted in November and December 1991 in

Coffeyville, Kansas, are used for our preliminary test.  The set
of instruments was described by Melfi et al. (1989) and Han
et al. (1994).

Retrieval Algorithm

in situ sensors, and integrated water vapor from the WVR.
The measurements of RASS virtual temperature profiles are
used to derive integrated water vapor and liquid and are also
used to convert water vapor from mixing ratio to absolute

another lidar, is also used in retrievals.  The vertical
coordinate of the profile vector x starts at the surface level.
The second level is set at the lidar’s first range gate.  The
remaining levels have adjacent intervals of 75 m, to be
consistent with lidar’s range gates.  The top level is set at
10 km, a height above which the total amount of water vapor
is negligible.

Under conditions when x is partially measured by the
lidar, surface instruments, and WVR, the retrieval of x is an
ill-posed mathematical problem.  Additional information is
required for such retrievals.  In our retrieval algorithm, we
introduce two such sources.  One is the information contained
in previous lidar measurements, and the other is the statistical
information obtained from an a priori water vapor profile
ensemble.  The algorithm is a two-stage retrieval that is
outlined in the following.

In the first stage, a KF technique (Gelb 1988) is applied
to derive a state vector s, which has the same vertical
coordinates as x but less range coverage.  The measurement
vector d, on which the filter operates, comprises a vapor
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mixing ratio at the surface and a lidar profile.  The number of expected.  Assuming a correlation time greater than 3 h, in the
the elements in d varies depending on the lidar measurements.
The error of the surface vapor mixing ratio is estimated from
the errors in the measurements of surface air temperature,
pressure, and relative humidity.  The error profile of lidar
measurements is related to the statistics of the Raman water a priori estimate, which is propagated from the last
vapor return signal and is given with each lidar vapor mixing estimation.  This effectively gives more weight to current
ratio profile.  The measurement error covariance consists of measurements in the profile estimation.  Existence of the
these errors, and it is assumed that the off-diagonal elements correlation is also inconsistent with the assumption that the
are zero, which is equivalent to the assumption that the transition errors are white noise.  However, our testing results
errors are uncorrelated with each other.  The dimension of s
depends on the following situation:  when the maximum height
of current lidar measurements is lower than those of all
previous measurements, the dimension is the same as the
previous; otherwise, the dimension is reset to that equal to the
dimension of the new measurement vector, and the KF is error covariance as the initial state.  The state vector s and its
re-initialized.  Thus, the state vector s describes atmospheric
water vapor from the surface to the maximum lidar range in
the history of lidar measurements.  In the first situation, the state vector and its covariance are seen as an a priori estimate.
portion that is not measured by current observation is actually
predicted from the past and the new measurements.  The
vector d is linearly related to s (corrupted by errors) with
coefficients contained in the so-called “observation matrix.”

The evolution of s is assumed to be a first-order Markovian on one hand, in the second stage of the retrieval process
process and is characterized by a time-dependent transition described in the following and, on the other hand, in the next
matrix, which linearly relates the s vectors at two different
times, and by the errors (assumed white noise) in the transition
model.  In our system, the time interval of the transition is
2 min.  Since the variation of the atmospheric water vapor in
2 min is usually small in comparison with the estimated
errors in the retrievals, we approximate the transition by
advancing s without modification, which is equivalent to
setting the transition matrix to unity.  The transition errors may
be estimated using a historic profile database.  The Raman
lidar itself may provide part of such a database if a large
number of nighttime clear lidar measurements are collected. climatological mean serves as an a priori estimate of the
For this experiment, however, the collection of clear-sky lidar unknown profile.  A covariance-weighted averaging is
measurements was not statistically sufficient. performed to combine the measurement vector and the

The database we used is a collection of 3-hourly radiosonde vapor profile.
profiles from five observation stations at the central CART
site during the Intensive Observation Period (IOP) conducted In the nighttime clear-sky cases in which the lidar covers the
in April and May 1995.  Over 700 radiosonde profiles are range close to the top of the retrieval vertical coordinate, the
used for the error estimation.  Assuming that the transition estimate from KF usually yields a much smaller error
errors are time invariant and time uncorrelated, we estimated covariance in comparison with the statistical covariance.
the errors by advancing each profile 3 h, calculating the mean- Hence, the averaging performed in the second stage is in favor
square difference between the advanced profiles and the of KF, resulting in an estimate differing little from that of KF.
profiles measured at that time, and then dividing the difference In other cases in which lidar measures only a portion of a
by the number of 2-min intervals in the advanced time period. profile, for the same reason as that in the clear-sky cases, the
In general, a certain time correlation between errors is two-stage retrieval yields a profile with that portion similar to

time intervals concerned, the correlations are likely to be
positive, causing the estimate of the transition errors to be
larger than those when the correlations are counted.  Larger
transition errors result in a larger error covariance of an

have shown that our KF technique under this assumption
works well for our system.

The recursive KF starts at an initial state and its error
covariance.  We use the first arrival of measurements and

covariance are propagated, according to the transition system,
to the point when new measurements arrive.  The propagated

Using the error covariance matrices as weights, the a priori
estimate is linearly combined with the new measurements that
have been mapped to the s space by using the observation
matrix.  The error covariance of the new estimate is also
calculated.  The newest estimate and its covariance are used,

process of KF estimation.

In the second stage, the estimate and error covariance of the
profile obtained from KF, as well as integrated water vapor
and its error from the microwave radiometer, comprise a new
measurement vector and error covariance matrix.  The
measurement vector again is related linearly to the unknown
profile by a new observation matrix.  From an a priori
ensemble of radiosonde data, a climatological mean of the
water vapor profile and its covariance were derived.  The

statistical data.  The result is our final estimate of the water
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the lidar measurements.  The other part of the retrieved profile of the cloudy period.  As anticipated, the retrieved profile
is a result of a balance among previous and current below the cloud base resembles the lidar measurement, and
measurements and statistical data. above the cloud base, the influence of the previous lidar

Experiment Results

During the FIRE II experiment, the Raman lidar observed the
atmosphere only during night.  There were a total of 14 nights
of observations, out of which there were 4 nights when low-
level clouds with cloud base at about 2 or 3 km were
observed.  Unfortunately, during the cloudy periods when the
lidar operated, there were no vapor profile observations by
other instruments, such as radiosondes.  Therefore, a direct
comparison of retrievals with “ground truth” is not available.
In order to demonstrate the system performance, we created
“clouds” by extending existing cloud bases into clear periods.
The Raman lidar soundings during these periods were then
truncated at the artificial cloud bases and used as cloudy
measurements.  The original lidar soundings were used as
ground truth.

We show here examples, which were obtained during the
artificial cloudy period on November 24.  Figure 1 shows a
retrieval  compared  with ground truth,  16 min after the start

Figure 1.  An example of retrieval using the technique
described in the text.  Dashed line, retrieval; solid line,
ground truth (from lidar); dotted line, artificial cloud that cover those portions.  The upper portions are constrained
base.  Data were collected during FIRE II.  The cloud
base is created by extending the existing cloud base
into the clear period.  The lidar sounding is truncated at
the artificial cloud base and used as cloudy
measurements.  The original lidar sounding is used as
ground truth.

measurements is obvious.  Figure 2 shows an example in a
situation when there are no historic lidar measurements
available above cloud base height.  This situation is likely to
happen when clouds persist for a long period or during the
daytime.  The information for the profile above the cloud base
is supplied by the statistical data and integrated water vapor,
as well as the lidar measurement below the cloud through the
correlations characterized by the error covariance matrix.  In
general, under such conditions, the profile above the lidar
range is smoothed.

Figure 2.  An example of retrieval when lidar provides
no historic measurements for the portion above the
cloud base.  Other notations are explained in Figure 1.

Summary

The Kalman filtering technique optimizes the use of
information contained in past and current lidar measurements,
surface in situ measurements, measurements of integrated
water vapor, and statistical data.  Under nighttime clear
conditions, retrievals differ little from lidar measurements.
Under cloudy or daytime conditions, the low portions of the
retrieved profiles also differ little from the lidar measurements

by the integrated water vapor measurements, and the profile
structures are shaped by the previous lidar measurements and
statistical data.  This technique extends our capability to
profile water vapor during cloudy and daytime conditions
using data that are, or will be, taken at the ARM Southern
Great Plains CART site.
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