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Figure 1.  Illustration of the argument of Byrne et al.
(1995):  Photons are trapped between two or several
clouds and thus it increases the global absorption.
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Recently, Cess et al. (1995) and Ramathan et al. (1995)
cited observations which exhibit an anomalous absorption
of cloudy skies in comparison with the values predicted by
usual models (homogeneous atmosphere) and which thus
introduce large uncertainties for climate change
assessments.

These observations raise questions concerning the way
general circulation models (GCMs) have been tuned for
decades, relying on classical methods, of both radiative
transfer and dynamical modeling, limited to studying the
radiation/dynamics relationship on an arbitrary scale (often
considered as “characteristic”), although the interactions
between clouds and radiations occur over a wide range of
scales.

These observations also tend to demonstrate that homo- However, Byrne et al. (1995) admit that the extreme vari-
geneous models are simply not relevant in relating the ability of the radiation fields can be best understood in a
highly variable properties of clouds and radiation fields. multifractal   framework   (see   for   instance   the 
However smoothed, the intensity of clouds’ multi-scattered different contributions on this subject in Davis et al. 1990,
radiation fields reflect this extreme variability. Gabriel et al. 1990, Lovejoy et al. 1990, Schertzer and

Byrne et al. (1995), in order to explain this anomalous cloud fields, as discussed below, respects the clouds
absorption, proposed a simple model of broken clouds and texture, clustering, bands and intermittency, and the non-
measured an increase in the value of the photon mean free linear nature of the true dynamical processes at all scales.
path in comparison with the value calculated for a homo- This model corresponds to a stochastic model of passive
geneous atmosphere.  The modeled media is a layer filled clouds, passively advected by a turbulent velocity field,
only with a mixture of clouds and portions of clear skies. using coupled cascade processes, and non-linearly
They argue that photons, diffused by a first cloud, can conserving the fluxes of energy and concentration variance
circulate horizontally in a “clear sky” region and be (Schertzer and Lovejoy 1987).  A (scale invariant)
reflected in the opposite direction by another cloud and multifractal field  is characterized by an infinite
could thus be “trapped” between two clouds (Figure 1). hierarchy of singularities  with associated codimensions
This phenomenon increases significantly the mean free c( ); that is, at a scale ratio , the probability (Pr) of the
path of photons and thus increases the total absorption of fluctuations of the field diverging faster than  scales as 
the layer. (Schertzer and Lovejoy 1987, 1991).

Lovejoy 1991).  Indeed, the (scalar) multifractal model of
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Figure 2.  K(q) for D’-integrated and dimension D
fields with  = 1.35 and  = 0.75 (H=0) for D=2 and
D =1.  Captions:  + Integrated field on a two
dimensional field D = 1; o  D=2.
Region 1:  
Region 2:  
Region 3:  

and the statistical moments scale as

where K(q)ln  is the second Laplacian characteristic func-
tion (or cumulant generating function) of  = ln which
is the generator of the process.

The functions c( ) and K(q) are related to each other,
using a Legendre transform (Parisi and Frisch 1985) and
for “universal multifractals” depend on only three
parameters:  (the degree of multifractality),  (the mean
homogeneity), and H (the deviation from conservation).

The light propagates through this multifractal cloud
density field which respects the Radiative Transfer
Equation (Chandrasekhar 1950) and we try to exhibit the
relationship between the singularities of the cloud density
field and the radiative field with respect to the cloud
density.  The radiative transfer equation is highly nonlinear
and it is not possible to find analytically a straightforward
solution.

However it becomes rather simple when applied to a 1D
medium.  The variation of the radiative field is then
proportional to the variation of the optical depth of the
cloud (i.e., corresponds to a 1D-integration of the cloud
density field).  For a plane parallel medium the
relationship appears to be a 1D-integration as well.  We
argue that this could be similar for more general media
(i.e., which have inhomogeneities along all directions).

We want then to compare the Radiative Transfer Equation
with a fractional integration and therefore we go back to a
more general study and determine what happens to the
statistics of a fractional-integrated multifractal field.

At first sight, a fractional integration of order H (i.e., a
power filter, order H) should only shift the singularities of
the fractional integrated field .

However it appears that it introduces also a critical
singularity below which it is not possible to get any
information about the statistics.

We compared two fields, the first one being a multifractal
field observed on a given dimension D and its D -
integrated counterpart (D <D).  We studied the relation
between their respective moments through the function
K(q) and between their codimensions c( ).  Then
introducing the critical moment , due to divergence of
high order moments, defined by  =D , we
get

For codimensions we have

In order to illustrate this point, we made 100 simulations
of a multifractal field (Wilson et al. 1991; Pecknold et al.
1993) with =1.35 (measured for clouds by Tessier et al.
1993), H=0, and =0.75.  Then we made a fractional
integration of order D’=1 for each realization, and we
calculated the moments and codimensions.  We represent
these on the following graphs which appear to confirm the
behavior predicted previously (Figures 2 and 3 where D=2
and D’=1).

Integration smoothes the low order singularities of a multi-
fractal field, which means that it should be also the case
for the Radiative Transfer Equation.  Thus, the radiance
field reflects only the high concentrations of water in
atmosphere.  However, the bad news is that we have to be
very careful with analysis of these fields; they must be
fractionally differentiated, otherwise the relevant range of
singularities that exhibits the universal exponents  ,
and H becomes rather small.
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Figure 3.  Codimensions of a D dimensional field and
the corresponding D’-integrated field with =1.35 and

=0.75 (H=0) for D=2 and D’=1.  Captions:  D=2;
 one dimensional integrated of previous, D’=1.
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