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Introduction

Atmospheric moisture distribution is directly related to th e
formation of clouds and precipitation and affects th e
atmospheric radiation and climate.  Currently, severa l
remote sensing systems can measure precipitable wate r
(PW) with fairly high accuracy.  As part of th e
development of an Integrated Data Assimilation an d
Sounding System in support of the Atmospheric Radiatio n
Measurement Program, retrieving the 3-D water vapo r
fields from PW measurements is an important problem.  A
new four dimensional variational (4DVAR) dat a
assimilation system based on the Penn State/Nationa l
Center for Atmospheric Research (NCAR) mesoscal e
model (MM5) has been developed by Zou et al. (1995 )
with the adjoint technique.  In this study, we used thi s
4DVAR system to retrieve the moisture profiles.

Because we do not have a set of real observed P W
measurements now, the special soundings collected durin g
the Severe Environmental Storm and Mesoscal e
Experiment (SESAME) in 1979 were used to simulate a
set of PW measurements, which were then assimilated into
the 4DVAR system.  The accuracy of the derived wate r
vapor fields was assessed by direct comparison with th e
detailed specific humidity soundings.  The impact of P W
assimilation on precipitation forecast was examined b y
conducting a series of model forecast experiments starte d
from the different initial conditions with or without dat a
assimilation.

4DVAR System

The 4DVAR system includes the forward model and it s
adjoint, and a minimization algorithm.  The detaile d
descriptions of the forward model (MM5) and its adjoin t
are given by Grell et al. (1994) and Zou et al. (1995).  Th e
minimization procedure used the limited-memor y
quasi-Newton method (Liu and Nocedal 1989).  A brie f
description of the working procedure of the 4DVA R
system is as follows:

 1. The forward model (MM5) integration started from a
guess of the initial condition in the assimilation tim e
window gives the basic states, which are use d
to calculate the coefficients for its adjoint.

 2. The backward integration of the adjoint model wit h
the forcing terms added will give the gradients of th e
cost function with respect to the initial conditions .
The forcing terms are usually calculated from th e
observed data available within the tim e
window and the model variables.

 3. The gradients are used to determine the descen t
direction, and the initial conditions are correcte d
based on this descent direction.

 4. With the new initial conditions, steps 1 to 3. ar e
repeated  This process continues iteratively an d
finally produces the optimal initial conditions, whic h
make the model trajectory a best fit to th e
observations within the time window 

Here the cost function J is defined as

Where  represents a vector of the model condition a t
and qs, PW, and  are the model and

observed surface humidity and precipitable water a t
  and  are the weighting coefficients.

Observed Data

The 3-hour soundings and the surface observation s
collected during the SESAME I case from 1200 UTC 10 to
1200 UTC 11 April 1979 were objectively analyzed to a
40-km grid using the Cressman scheme (Figure 1).  Th e
observed precipitable water is computed from the vertica l
integration of the specific humidity:
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Figure 1.  The model domain with the rawinsonde
stations plotted.  The numbers above the stations are
the station ID.  Inner box shows the region used for
precipitation verification.

(2)

Figure 2.  The rms errors of specific humidity field at
1800 UTC 10 April for Exp. ANAL, INTP, PW, and
QSPW.  The numbers above each of line patterns are
the vertically integrated rms error.

where is the objective analysis of the specifi c
humidity,  (where is the surface pressure an d

 is the pressure at the model top [100 mb]), K=10 is th e
total number of the model layers,  is the thickness of the
layers (0.1), and g is the acceleration due to gravity.  Th e
specific humidity at the lowest model level was
used as the observed surface moisture  The model
PW is calculated in the same manner.

Experiment Design

The data assimilation time window is 1 hour fro m
1700 UTC  to 1800 UTC 10 April.  The initia l
guess at was interpolated from the analyses of 120 0
UTC 10 and 0000 UTC 11 April.  Four experiments wer e
conducted to assess the impact of the data assimilatio n
(Table 1).

Results

To evaluate the quality of the retrieved specific humidit y
via the variational data assimilation approach, w e
calculated the rms, bias, and non-bias errors at 1800 UT C
10 April verified against  the  soundings  observations  a t
36  stations  and the

Table 1.  Experiment design.

1-H 4DVAR 6-H Forecast

Exp. Name 1700 Z 1800 Z 1800 Z
Init. Guess at Obs. Data at Init. Cond. at

ANAL N/A N/A Analysis

INTP N/A N/A Interp.

PW Interp. PW From 4DVAR

QSPW Interp. PW, qs From 4DVAR

threat scores for 3-hour accumulated rainfall forecas t
during the period of 1800 UTC 10 through 0000 UTC 1 1
April.

Errors

Figure 2 shows that the analyzed specific humidity is ver y
accurate compared with the station observations.  Th e
vertically integrated rms error is only 0.15 g/kg.  Th e
interpolated shows errors as large as 2 g/kg at leve l
8 and 9 and has integrated error of 1.2 g/kg.  Th e
assimilation of PW reduced the integrated error to 0.8 9
g/kg, and the addition of the surface moisture furthe r
deceases the error to 0.78 g/kg, which derived mainly from
the improvements in the surface moisture field.
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Figure 3.  The distribution of the (a) bias errors and (b) rms errors of the specific humidity for
Exp. INTP, and the distribution of non-bias errors of the specific humidity for (c) Exp. PW and
(d) Exp. QSPW at 1800 UTC 10 April.  The contour interval is 0.5 g/kg.

Figure 3 shows the distribution of the errors for Exp .  1.11g/kg  at  the  3 stations, respectively (Figure 3c an d
INTP, PW, and QSPW.  Large bias (PW) errors of 1.42 ,
1.70, and 1.37 g/kg are found at station 353, 260, and 1 3
for Exp. INTP, respectively (Figure 3a).  The rms error s
are 2.04, 3.03, and 1.79 g/kg at these 3 station s
(Figure 3b).  As expected, the assimilation of PW or P W
and qs effectively removed the bias errors.  As a result th e
bias (PW) errors for Exp. PW and QSPW are close to zer o
(not shown), and the rms errors and non-bias errors ar e
almost identical.

Figure 3c and 3d showed that assimilation of PW or P W
and qs reduced the errors to 1.36, 1.53, 1.18 and 1.14, 1.41,

3d).  We also noticed two other interesting stations, 1 an d
19.  The rms errors for Exp. INTP are rather larg e
(Figure 3b).   Figure 4 shows the vertical moisture profile s
at these two stations.  Station 1 has very small bias erro r
(0.18 g/kg).  Therefore, the assimilation of PW alon e
would not be effective.  However, the assimilation of P W
and surface moisture reduced the errors dramatically fro m
3.73 to 1.33 g/kg (Figure 4a).  Station 19 has a small bia s
(PW) error (0.50 g/kg) as well as the small surfac e
moisture error (Figure 4b).  According to the cost functio n
in section 2, the forcing terms at this station were small, so
the assimilation of PW and the surface moisture would no t
lead to improvement on this complicated vertical moistur e
structure.
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Figure 4.  The vertical moisture profiles at (a) station
1 and (b) station 19 for Exp. ANAL, INTP, PW, and
QSPW.  The numbers above each of the line patterns
are the mean values of the specific humidity (g/kg).

Figure 5.  Threat scores of 3-h precipitation forecast
at a threshold of 5 mm from 1800 UTC 10 to 0000
UTC 11 April for Exp. INTP, PW and QSPW verified
against the forecast from Exp. ANAL.

Verification of Precipitation
Forecast

Figure 5 shows that the Exp. INTP has a very low precip -
itation forecast skill as verified against the forecast of Exp.
ANAL, which has the detailed moisture analysis.  Th e
threat scores are close to zero.  The assimilation of P W
data improved the precipitation forecast considerably .
Further improvements were found with the addition o f
surface moisture  data  in the assimilation cycle .

Assimilation of the

moisture alone was certainly not enough to get a goo d
precipitation forecast skills (TS is only 0.2~0.3; Figure 5) .
The best results were obtained when the PW and surfac e
moisture data were assimilated in combination with th e
wind and temperature data (TS reached 0.5~0.6; Kuo et al .
1995).

Summary and Conclusions

In this study, the newly developed variational data assimi -
lation system based on the Penn State/NCAR mesoscal e
model MM5 and its adjoint were used to conduct a serie s
of experiments in retrieving the moisture profiles from th e
observed PW data.  The PW observations at one tim e
level, 1800 UTC 10 April 1979, were obtained from th e
vertical integration of the observed analysis of the specifi c
humidity during the SESAME I period.

We found that the assimilation of precipitable water meas -
urements can recover the vertical structure of water vapor .
The use of surface moisture data can further improve th e
accuracy of moisture retrieval, particularly in the lowe r
troposphere.  The improved moisture analysis as a result of
PW (and surface moisture data) assimilation can lead to 
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improved characterization of the moisture field over th e Kuo, Y.-H., X. Zou, and Y.-R. Guo.  1995.  Variationa l
CART domain and, in general, improved short-range pre - assimilation of precipitable water using a nonhydrostati c
cipitation forecast. mesoscale adjoint model, Part I:  Moisture retrieval an d
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